
TORNADO DESIGN

Vortex and
Netelligence
Life. Connected.

By Christopher Lewis

Vortex and Netelligence

A new programming language, and the web-
based personal digital assistant built on it.

By Christopher Lewis

© 2020 Christopher Lewis

First Edition

All Rights Reserved. No part of this publication is worth
reproducing, storing in a retrieval system or transmitting in
any form or by any means, electronic, mechanical, stone
tablet, photocopying, recording, scanning or otherwise,
except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by
myself via a scrap of paper and a yellow crayon. Requests
to the publisher for permission should be addressed to the
twitter handle below, proving that people actually read this
because I am sure they don't.

Christopher Lewis
Twitter:- @Cyberneticist
http://www.vortexcode.co.uk
https://www.tornadodesign.co.uk
https://netelligence.tornadodesign.co.uk
http://www.netelligence.co.uk

http://www.vortexcode.co.uk
https://www.tornadodesign.co.uk
https://netelligence.tornadodesign.co.uk
http://www.netelligence.co.uk

Over 20 years in the making, I am finally ready to share this
with the world! Netelligence is one thing that I have kept
coming back to over the years. I kept thinking it wasn't the
right time, or it was too late. I guess the only answer is to get it
out there. Now there is a language to power it, it seems to be
the right time.

Netelligence. Your life. Connected.

Prologue

Back in 2001, I had a friend come visit me one weekend. He
had a flip phone, the Motorola Razr, while I had a Nokia
7110. He forgot his charger, and the battery lasted until the
very moment he needed it to phone his parent - it died. We
couldn't use my charger, and I didn't have the phone
number to call using mine. It set the seed of an idea that
started life as a Wap application (Remember Wap?!) and
culminates in what you see here. If only there was a way of
keeping your contact information online, so that if your
phone died, you could log into you or account via someone
else's and make the call from that.

2004. I have moved on to another phone, the Sony
Ericsson P800. I'm out in Nottingham and love my phone.
I'm just doing some note-taking and typing and suddenly....
it resets. I lose.... everything. All my notes, all my numbers,
all my contacts, all my email accounts.... Now what?
Luckily I have a backup, but that is back at home - about
200 miles and 3 days away.... If only I had all my notes and
everything on some form of online backup, that I could just
log into and either restore it all back onto my phone, or
actually - use it from the internet? I was lucky though, I had
a Psion 5mx and could use that to keep working. I even had
a copy of my contacts on it, so had no issues with getting in
contact with people, if needed. But it helped solidify what I
wanted to create!

Obviously now we live in a very different age. Our devices
are linked to the internet by default, and we are all used to
online services for word processing and storage. But I still

feel that there are so many disparate services out there, and
no unifying overall platforms. For example, I have 6
different programs that can act as a "to do" list on my
phone. Why do I have to add the same items into each
program? Why can't they all just access "my to do" and
display them in the ways that the program is designed to?
That is the goal of Netelligence. It stores your information
and any programs that need to access specific types can,
and then display them in the way they are programmed to.
Then the user can chop and change between the tools that
they find most useful to them, without having to have
multiple copies of the same data siloed into different files or
programs. You can have word processor documents with
live graphs that update when you change a separate
spreadsheet. You can draw on a whiteboard and have that
information automatically in notes for all your students to
view. This is Netelligence. This is your life. Connected.

All the code and tools that you will need to get started,
including all the examples in this book, can be found at
http://www.vortexcode.co.uk or scan the QR code below!
(Yes, the QR code was created in Vortex too!)

http://www.vortexcode.co.uk

Prologue 5 ..

Why Another Language? 10 ...

Ten Simple Rules 14 ..

Conventions 16 ..

Why Vortex? 18 ..

HTML and the Document 22 ..

Cascading Style Sheets 31 ...

HTML Tags 37 ...

Cascading Style Sheet Tags 38

Colours in a Computer 39 ..

JavaScript 41 ..

Setting up your own system 48

TornadoScript 51 ...

Vortex for Beginners 61 ..

The Algorithm is never finished! 82

Making our cup of tea pretty 89

Scripts & Functions 101 ...

Components 113 ...

Calling Functions from Variables 123

The Vortex Adventure Game 125

Post-backs and AJAX and Files, Oh My! 142

Making Websites Cleaner 163

Designing a Program 202 ...

The Data 208 ..

Using Node Types 216 ..

The Node Renderer 220 ...

Parents and Children 232 ...

Creating and Linking Nodes 233

Updating Nodes 234 ...

The Netelligence Program Pattern 236

The Graphic generate Pattern 238

The Ajax Form Post-back Pattern 240

The Ajax Form Dialog Pattern 243

Standalone Vortex Code (Single script) 244

Graphic Manipulation 246 ..

Simple 3D 247 ..

Building a Unit Test Rig 250 ..

Complex Components 253 ..

The User Interface 258 ..

Making your own Commands 270

Where is Vortex headed? 271

Special Thanks 274 ..

Command List - Up to Date? 277

About the Author 326...

Why Another Language?

V ortex was not just developed on a whim. It grew
out of a set of projects that I was working on that
has culminated into a fully inclusive system. It all

started with what I hoped would be a PhD for me to take -
"Can you build a computer that would last 1000 years?"
There are a lot of complexities to this question, but
ultimately it was about building a virtual computer that
could sit on top of any computer and could be developed
easily by anyone with a bit of basic programming
knowledge. That would be a book in itself!

As a teacher, I had tried to develop a scripting language
to make games with easily. This language, TornadoScript,
worked for games But was never designed to be a general
programming language.

What I wanted was a language that was more multi-
purpose, more flexible, and could be more useful to
people. One thing that has always interested me about
programming is that the languages we use are basically all
built in English, no matter if that is our native language or
not. Surely this makes it harder for someone to learn if
English isn't their first language? I know that "Convert" is
going to change something into something else, if it was in
French and said "Convertir" I could probably guess at what
it would do, but if it said "Tiontaigh" I wouldn't have a clue
(That's "Convert" in Irish). What if it said "ਤਬਦੀਲ
ਕਰ"ੋ (Punjabi) instead? I would have to learn the shapes and
patterns of the words and what they represented before I
even start with the complexity of coding.

I came up with a new data storage system that is known
as a "hierarchical self describing semantic network" which I
term "Netelligence". The concept of this system is that any
type of data can be linked to any other, and could
automatically display the data in a browser. To get this
working in more than just a basic way, I soon realised that
there would need to be some form of scripting language
that could take the data and manipulate it ready for display.

It is these projects that led to the language that has grown
to become Vortex, and it is intrinsically linked to the
Netelligence data storage system. There are some really
unique features to Vortex that make it a hugely flexible
language that can be extended by anyone that wants to,
and can be rebuilt for multiple platforms.

Every command is built into a library that is loaded up
into the system at runtime, not at compile time. This means
that if I want to add new commands, I can do so without
having to update the entire system each time. I also allow
anyone to make commands as they wish for the language
too, so if Vortex doesn't do something that you need it to,
you can create your own command (currently in c#, but
eventually in whichever base system the engine has been
written in).

Each command has a unique identifier associated, so if
you wanted to you could take the current commands and
rewrite them in a different language / alphabet however
you wished, and as long as you kept the same unique
identifiers as the English counterpart, someone that had
written their script in English could convert it over to the
other language. This means people learning the language
who are not English speakers are no longer at the same
disadvantage as they are in most current languages.

Each command completely describes how it can be used
and gives a description of what it does, and these can be
accessed by the programmer. You also have a command to
list all of the commands. This means that someone could
take the current commands and engine and go through all
the commands one by one, and rewrite the engine in
another language so that as long as the commands all do
the same thing, you can make your own engine for a new
platform - even one that currently doesn't exist.

Each command library can also have an associated file
with it for "legacy" commands. I may, for example, have
started off creating the command "Dec" to decrement a

counter, but later I may change my mind and want it to be
"Var.Dec" to show it works with variables, making a change
to the language would normally mean having to go and
change all the scripts that use that command. However, I
can add into the legacy list that "Dec" maps to "Var.Dec",
then if the script says Dec it knows which command to use,
and adds an alert to the error log that says that the
command needs updating. It also means that tools can be
made to automatically update scripts to the latest versions
of commands.

Ten Simple Rules

I f everything's sounding a little complicated, it actually
isn't when writing vortex scripts. In fact, there are just
ten rules to follow in this language's grammar, and if

you can master these, you can build programs in Vortex.

1. Vortex code starts with <? and ends with ?>
2. A VTX Script file can contain web code (HTML, CSS,

JS, Etc) and Vortex code.
3. You can have multiple sections of Vortex code in a

single file.
4. Comments in Vortex code are surrounded by the

tags <!-- -->
5. Every Name being used, eg a Variable name, is in

speech marks
6. If the value of a variable etc is to be used, the name

is without speech marks

7. Every command in Vortex has the same format - the
command comes first, then the parameters, finally a
semi colon. Vortex is case sensitive.
8. Any conditional statements are in smooth brackets
9. Any sub items / code lines are in curly brackets
10. Compound commands (where a command is used

within a command) are in square brackets

You may ask, what does this all mean? It means that
every line of code follows the same pattern, making it much
easier for the programmer to read and understand. It
means that you can have a single file containing webpage
information as well as the server side script. It also means
that this is the first language that you can write code in
multiple human languages and it can still run! The first
language that holds enough information about itself for any
future programmer to recreate it and not lose our
information.

Conventions

T his book uses different text styles to show you
different information. Here are some examples.

A block of vortex code:

<?
<!--
Comments are in green
-->
Var "VortexCode" "Is in this text style";
<!-- Important code may be highlighted in yellow
-->
If([Var.Exists "CMD"] == "False")
{

WriteLn "Error Code 001 - CMD Not Found";
StopScript;

};

While a block of HTML on a page (or CSS / JS) looks like:

<html>
<head>

</head>
<body>
 <div id="Hello" class="TestStyle">
 This is text for HTML or other internet tech
 </div>
</body>
</html>

Why Vortex?

V ortex is a language like no other. There are so many
reasons for using it, whether you are building a
static website, web, or even desktop style

application. It is a scripting language, which comes with the
drawback of speed, but the flexibility it offers are worth the
trade off. So, what are the top reasons for using Vortex?

• 10 Simple rules for writing every line of code, always
the same, making it clear and easy to read for all skill
levels.
• Option for encrypted script files - unlike PHP or other
scripting languages, you can install Vortex scripts on a
client's machine and know that they aren't going to have
an easy time finding out how your program works
• Secure Variables, Arrays and Functions - you can
specify to lock an item in your script using a password,
then no other script or program can overwrite it unless
they know the unlock code.

• No sand boxing between applications, just between
users - this can be considered dangerous but it opens up
possibilities, and with proper use of other secure
methods it can be fully trusted.
• An In-built data system called Netelligence, making it
easy to create applications using existing data the user
already has - e.g. you can make a "To do" list app that has
access to all of the To Do's that the user has created in
any of the different to do apps they have.
• An in built login system, providing security and
traceability throughout the system.
• Full Caching available - an application can be as fast as
just serving the html code that the application needs.
• Simplicity in website development - it can simplify
layouts and information that makes up a webpage,
improving maintainability.
• The contents of Variables can be run as functions and
supply input parameters. While this sounds dangerous, it
gives great power to the simplicity of your programs and
is tricky to exploit, given other security features.

Section One - A Primer on
HTML, CSS And JavaScript

Before we start looking at Vortex, you may want to
familiarise yourself with some basic information about web
pages and web applications, as this is what Vortex script
code turns into. To help you with this, this section is a
"primer" on some of the basics about web technologies in
order to give you that basic information. It won't be enough
to be a professional web developer, but will give you
enough to start on your journey to learning about the
technologies that give the web such power!

HTML and the Document

T his is not going to cover everything you need to
know - you would need an entire separate book for
that! Instead, this is just a very brief starter on the

basics that may be useful to you for building simple web
pages.

HTML stands for HyperText Mark-up Language. This means
it is a language that sets the format for the data that it
surrounds.

HTML works by using a series of “Tags”. These are
special codes that tell an internet browser how to show
information. If you have ever looked at the "source" of a
web page, you will see it is written in text with various code
in triangular brackets. It is these brackets that direct the

browser in how to format the text. For example, the tag
“” means “everything after this point should appear in
bold”. To tell the browser to stop showing things in bold,
the tag “” is used. So if you typed:

Hello there, my name is X and I live in England

This would appear in a web browser as:

Hello there, my name is X and I live in England.

The majority of tags in HTML need a closing tag, so that
you know where to start and where to stop, just like in the
example with the bold tags. A few commands act as a
"placeholder" for an item - for example, an image is
represented with a tag to say where
to show the image, and you can see it opens and closes in
the same tag.

An HTML Document

While I’m talking a lot about HTML, what we are really
using is called XHTML. Don’t worry, they are basically the
same, the only things to remember are that you need to put
a line of writing at the top of every page, and the tags that
you use should all be lower case. That’s all!

Now, every document has a structure. Basically, you need
a set of tags that show where the html starts and ends
(Obviously as the whole thing is an HTML document, it
should be the first and last tags!) and there are two sections
to the document – The head, and the body. No feet or arms.

The “head” is where we put information that doesn’t
appear on the page – Links to stylesheets and javascript
files go here, along with so-called “meta” information,
which is information used by search engines to help
categorise the website in the correct manner. On the next
page is a framework for an XHTML file, and I have included
a Stylesheet link in it, as we will normally be creating
websites which use stylesheets anyway.

The <title> tag is used for the name of the website to put
in the browser bar at the very top of the screen.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 TransiRonal//EN">
<html>
<head>
 <Rtle></Rtle>
 <link rel="Stylesheet" type="text/css" href="Stylesheet.css" />
</head>
<body>

</body>
</html>

Separating Content and Style

Even though I’ve used the bold tag in my first example,
modern-day Web designers and developers try to keep
content and style separate. For this, we try and minimise
what tags are held in an HTML document, and we store all
of the style information in a separate file, known as a
Cascading Style Sheet, or CSS. So why do we do this? Well,
there are lots of reasons, which I’m sure you could find out
with some research!

So, what tags are most used in HTML, and what do they
do?

Well, let’s start with the tags that do make a difference to
the style in a browser, but are there to note changes in
content:

<h1>Heading 1</h1>

<h2>Heading 2</h2>

<h3>Heading 3</h3>

<h4>Heading 4</h4>

<h5>Heading 5</h5>

<h6>Heading 6</h6>

<p>A Normal paragraph in HTML. When you end a paragraph with the
tag, the next paragraph appears underneath this one</p>
<p>With a line space between the two. If you were to use a line break
instead of an end paragraph,

the next line is directly underneath the first.</p>

Heading tags specify that it is a heading for a section, and
as you can see in the boxes, they all start with an “h”
followed by a number. In this way you can have main
headings and sub headings.

Paragraphs use the <p> </p> format. If you press “enter /
return” on the keyboard when writing HTML and then look
at the HTML in a browser, you will notice that the browser
ignores it totally and just puts things all on one line. The
only way to have things on different lines is to use the

paragraph tags, or to use
 - a “Line break”. There is
also another interesting quirk of HTML – try typing hello
world (hello with 5 spaces then world) and you will find in
your browser that it ignores everything other than the first
space. We’ll get onto how to do things like multiple spaces
later!

If you are creating lists of information you should use
either an ordered or unordered list:

 Home Page
 About Us
 Contact Us

Gives You:

1. Home Page
2. About Us
3. Contact Us

This is an ordered list. If you change the opening
and closing tags for you get an unordered list:

 Home Page
 About Us
 Contact Us

• Home Page
• About Us
• Contact Us

Some tags allow you to make references to other files,
either for embedding things into the browser file or by
linking to other web pages for navigation.

To create a link to another page that you can click on, the
opening tag is:

You then type what you want to show on the screen that
the person can click on, then use the to close the tag.

The “a” stands for “anchor” – When HTML was created,
it was seen as a sea of information, and you needed
anchors to help you navigate through the storm. If you
think that’s strange, why not research why errors in
computer programs are known as “bugs”!!!

The <a> tag is one of the most important in HTML, and
there are other things you can do with it. For example, if
you wanted the tag to open a page in a new window rather
than replacing the current browser window, you can use a
special command “Target” within the tag:

Click Me

There are several different options you can use for the
target, and all of the special words that mean something
start with an underscore. Take a look at the glossary for
more information on targets.

So far, the web pages you can create are all just full of
writing. How about some pictures? The picture, or image
tag is like the line break tag, in that it is one of very few tags
that do not have a pair, because there is nothing to
surround – so just like a line break tag, you finish the tag
with a “/” at the end (You all noticed that for the line break
tag of course, didn’t you!)

It is as simple as that. You may have noticed that the
filename is listed as “href” for the a tag and “src” for the
image tag. Well, href stands for “hypertext reference” while
src stands for “source”. Why? Who knows! Also notice the
“alt” bit in the image tag? This is important, as it is what is
said out loud by a screen reader for partially sighted
website visitors, and is what shows if someone has switched
off graphics on their browser.

Just like with the “anchor”, images can have other special
commands – Height and Width. This means if you want an
image to be a different size on your webpage than it really
is, you can! You can also stretch and squeeze them into a
different shape.

DIV and SPAN

DIV tags and SPAN tags are at the heart of this conversion
to separating content and style, so it is important that they
have their own section in this guide. So what makes them
so special?

First of all, let’s talk about SPAN. SPAN, on it’s own, does
nothing. Yup, that’s right – if you were to put, say
“Hello my name is X and I live in
England” and view it in a web browser, all that would
happen would be the SPAN tags wouldn’t show. So why do
we have them? Well, they are used so that we can mark a
section of our content as being needed to be styled using
the stylesheet, without having to go into any detail on what

that styling should be. This would be a great point to
introduce a command that can actually be put into
basically every HTML tag, and it’s known as the identifier,
or ID.

Here is some text

If you type this in and view it in the browser, it still does
nothing. However, we now have a name for the tag, and we
can use this in our stylesheet to say “wherever the id of
“name” is used, format the text like this”. Say we wanted
some complex formatting – change the font to Arial, make it
in bold and italic, and change the size to 16pt, then in old
style HTML we could have done:

<i>Here is some text</i></
b>

(note: Okay, Okay, actually this HTML could be shorter –
I’m over emphasising the point, for those people who know
something about HTML and have noticed!)

As you can see, it’s a bit longer than having that
information stored in a CSS and just referenced using
“name”. Say we wanted to have this as our “heading” view,
so we needed this 10 times on a page? That’s a lot of wasted
space, repeating it over and over. You may not think that it
would be important, but every second counts when
building websites – if your website doesn’t load up in 3
seconds on a broadband connection without some form of
“Loading” screen, people won’t use it – FACT!

DIV tags are like SPAN tags, although they do have a “line
break” effect, so if you had:

<div>One</div><div>Two</div>

The browser would actually show:

One
Two

This is because DIV’s, or Dividers, are used to separate
content into sections. This will become very important
when we start talking about HTML layouts in a short while,
but don’t worry just at the moment. Just bear in mind that
it’s a useful tag to know!

Cascading Style Sheets

S o you’ve been shown the content formatting; now
it’s time to introduce the other piece of the website
puzzle – style and layout.

CSS files are text files, just like HTML, but they have a
totally different layout. They don’t use tags, but have an
object-like approach.

Let’s start at the beginning. Any tag that you have used in
an XHTML document can be styled using CSS. If you want
to style a tag, you just type the name of the tag, then within
some curly brackets set what you want the styles to be. For
example, say we wanted everything on the webpage to use
the font Arial rather than the default one picked for us by

the browser. Well, everything in the webpage is within the
“body” tag, so let’s style that:

body
{
 font-family: Arial, MS Arial, Sans-Serif;
}

If you put this in a text file, then add a link in your HTML
file to the stylesheet as shown on the XHTML framework at
the start of this chapter, you will find anything in the file is
now shown in an Arial font.

You can put any tag in you like in place of body – Do you
want all your headings styles like I used in the SPAN
example? Why not use <h1> for the heading, then style it!
Then we have the logical name “h1” in our HTML, and our
style in our CSS!

h1
{
 font-family: Arial, MS Arial, Sans-Serif;
 font-size: 16pt;
 font-weight: bold;
 font-style: italic;
}

A huge benefit to this is that if we want to change the
style at any time, we just change it here, and magically all
our headers will change to match! Much easier than going
through hundreds of pages of HTML and manually
updating every header!

Let’s take a bit of a closer look at what’s inside the curly
brackets. First of all, you will notice each line has a phrase,

followed by a colon, then some information and a semi
colon. This is the structure for every line in a CSS –
Command then Data, with the command separated from
the data by a colon, and the data “terminated” by a semi
colon. So what are the different commands, how do we use
them, and what do they do? Well, there a quite a lot of
them, so I’m not going to go through each and every one of
them – you can find them out for yourselves in books and
the internet! I will go into some detail later in this
document, but to whet your appetite, here is a description
of the items shown above:

Font-family – this is a list of fonts. Why a list, and not
just one? Well, a web browser only has access to the fonts
installed on the computer it is running on – one thing that
web browsers currently can’t do is embed fonts to use
(although PDF’s can!). Therefore, you have to try and cater
for as many options as possible, with the closest matches.
The browser will go through this list in the order you write
it, so put your preferred font first. For example, if you like
Calibri, which only exists generally on Windows PC's, you
may also need Verdana or Arial, and you should finish your
list with “Sans-serif” which means “If you can’t find
anything else, just use your generic Sans-serif font instead!”

If you need to know the difference between serif and
sans-serif fonts, these are Latin terms – Serif means with
tails, e.g. Times new roman is a Serif font, and Sans-Serif
means without tails – Arial, Calibri and Verdana, for
example. You also need to make sure you use the correct
spelling for the font, and if you are going to use Arial,
always also put in MS Arial, which is the version looked for
in some older versions of Windows.

Font-size - the values here can be in “points” which is a
printed character term, or in pixels, which is the size in
dots on the screen. They give very different sizes too:

This is 16pt

And this is 16px

 So make sure you use the right one! 16 pixels or 16px, on
my screen at least, is the equivalent of about 12pt, or 12
point.

Font-weight - “Normal” is used if you don’t want bold,
but you can actually go beyond just “bold” as well –
“lighter”, “bolder”, or an actual weight number from 100
to 900 can be used.

Font-Style - italic, normal, or oblique can be used.
Oblique is very similar to italic, but the italic effect is done
by pulling the top of each letter to the right, so is really only
used when the font you wish to “italicise” doesn’t have an
italic version on its own.

Identifiers and Classes

Sometimes when styling items, you only want to style
one specific instance of an item – for example you may not
want to style every paragraph, but want the first paragraph
in a different style to the rest. Well, as well as setting styles
for tags as shown above, you can give the tag an “identifier”
and style that instead!

Say you wanted a paragraph tag to have the identifier
“topOne” (Identifiers are always a single word with no
spaces). In our HTML, we could do the following:

<p id=”topOne”>This is the first paragraph!</p>
<p>This is the second paragraph</p>

As you can see, we can set the tag’s identifier by using
“id” within the tag. To style an identifier in the CSS, we use
a “#” prefix:

#topOne
{
 border-style: solid;
 border-size: 1px;
 border-color: black;
}

You should only have one item in your HTML file with a
specific id name – you cannot use the same name more
than once (id’s are used by JavaScript and other web
programming languages, and using the same id on more
than one item will stop them working properly). So how
can you style a set of items with a specific style? For this,
we use a class. Classes can be used on as many items as you
wish:

<p class=”oddPara”>This is the first Paragraph</p>
<p class=”evenPara”>This is the second paragraph</p>
<p class=”oddPara”>This is the third paragraph</p>
<p class=”evenPara”>This is the fourth paragraph</p>
<p class=”oddPara”>This is the fifh paragraph</p>
<p class=”evenPara”>This is the sixth paragraph</p>

classes are referenced in CSS with the prefix of a “.”:

.oddPara
{
 font-family: Times New Roman;
}
.evenPara
{
 font-family: Arial;
}

You can use identifiers and classes together in a single tag
as well – when you do that, you end up getting the styles
applied from both!

<p class=”oddPara” id=”topOne”>This is the first Paragraph</p>
<p class=”evenPara”>This is the second paragraph</p>
<p class=”oddPara”>This is the third paragraph</p>
<p class=”evenPara”>This is the fourth paragraph</p>
<p class=”oddPara”>This is the fifh paragraph</p>
<p class=”evenPara”>This is the sixth paragraph</p>

If you have the same style item to set listed in both the id
and the class, how does the computer know which one to
use? The clue is in the name CASCADING style sheet. A
style later in the CSS file overrides any style set earlier on in
the file, so if you classes were listed after the identifiers, it
would be the classes style that would be used.

HTML Tags

T here are hundreds of useful HTML Tags in existence!
A great resource for this is Eastman Reference,
which has a pretty up to date list at https://

eastmanreference.com/complete-list-of-html-tags with the
benefit of being able to click through some of the tags to get
extra information on them!

https://eastmanreference.com/complete-list-of-html-tags
https://eastmanreference.com/complete-list-of-html-tags
https://eastmanreference.com/complete-list-of-html-tags

Cascading Style Sheet Tags

T here is so much you can do with CSS, and again
there are some fantastic resources out there that
you can use. Why not try https://

www.tutorialrepublic.com/css-reference/css3-
properties.php for a list of the latest CSS properties that
you can use.

https://www.tutorialrepublic.com/css-reference/css3-properties.php
https://www.tutorialrepublic.com/css-reference/css3-properties.php
https://www.tutorialrepublic.com/css-reference/css3-properties.php

Colours in a Computer

C olour in a computer can seem a bit tricky to
understand at first, but once you work out how the
codes all work, you should find it quite easy to

understand!

I am not going to go into a huge level of detail, again I'm
just going to go through enough of a basic understanding to
get you up and running!

Inside a computer, just like anything that uses a display
made up of light, every colour that appears on the screen is
a combination of Red, Green and Blue mixed together. If
you mix a maximum red green and blue level together you
get white, and a minimum of the three gives you black.

Anything in between these two extremes gives you a grey
level. If you boost the red to maximum and set green and
blue to minimum, the colour shown is red. Similarly, you
can get green and blue by doing the same thing with these
colours.

In computing, we call these colours "channels", and
generally when we are talking about the internet and
webpages, the minimum is 0 and the maximum is 255. It
may seem like a strange number to have as a maximum, but
there is a reason - it's the largest number a computer can
store in a single "byte" which makes up the basis of all the
numbers stored inside a computer.

This means that if I want to use the colour white, I need
to set the red, green and blue to 255. I can write this in two
ways in CSS:-

rgb(255,255,255)

Or

#FFFFFF

Why F? Well, its a number format called hexadecimal,
and used base 16 rather than our number system which
uses base 10, so it has to use letters too represent numbers
above 9: - A = 10, B = 11, C = 12, D = 13, E = 14, and F = 15.
Each pair of numbers corresponds to a single colour
channel. Let's break it down:

FF = (16*F) + F = 16*15 + 15 = 255

JavaScript

T here are books thicker than I am that describe how
to program in JavaScript, so I'm not at all going to be
able to do it any justice in just a few short pages of

my book. Instead, I am going to talk you through a
JavaScript based accessibility system for a website so that
you can build it yourself and see what you can learn along
the way! This is the first JavaScript application I get my
students to build when I teach web development.

First of all, open a text editor, and save the empty text file
as "Test.htm". Make sure you set the file type to "all files" if
you are in Notepad on Windows, or it will automatically
add a ".txt" extension to the file and therefore won't open
up automatically in a browser. Once you have done this, we

are going to type some very basic HTML for a basic page
structure:-

<html>
<head>
</head>
<body>
</body>
</html>

I am going to use the same nomenclature throughout this
example - anything in red text should already be in your
document, and are shown in the step to guide you with
where you should write the next part in. For example:-

<body>
<div id="Menu">
</div>
<div id="Hello" class="TestStyle">
This is a DIV Box and some text inside it
</div>
</body>

Means that your page should now look like:-

<html>
<head>
</head>
<body>
<div id="Menu">
</div>
<div id="Hello" class="TestStyle">
This is a DIV Box and some text inside it
</div>
</body>
</html>

So let us continue! We are next going to add some more
code in between the "head" tags:

<head>
<Rtle>Test Javascript Work</Rtle>
<style type="text/css">
</style>
<script type="text/javascript">
</script>
</head>

Now save all of your work. Don't close the text editor, but
find where you have saved "Test.htm" and open it in a
browser - you should find you now have a website which
says "Test JavaScript Work" in the title of the tab, and then
just some words saying "This is a DIV Box and some text
inside it" on a white background. If you can see this, you
have it correct!

What we are going to do next is style our page using CSS.
We have a space set up for our styles in the Head section:

<style type="text/css">
div
{
 width: 100%;
 text-align: center;
 font-size: 12px;
}
#Menu
{
 background-color: #777777;
 height: 20px;
}

a, a:Visited

{
 color: #AAAAAA;
}

.TestStyle
{
 height: 480px;
 background-color: #2374B6;
 color: #FFFFFF;
}
</style>

Save the page and reload it in your browser, and there
should now be a grey bar at the top, followed by a blue box
containing the words in white. If you have not got this,
there are a few places which could have caused your
possible problems:

Capital letter usage – make sure they match what is listed
throughout, as everything in CSS and JavaScript is case
sensitive, just like passwords are.

Check that you have not missed off the full stop / period
before the words "TestStyle" - this indicates it's a class.

Make sure you have used the American “Color” not
“Colour” for descriptors - CSS was developed by
Americans, it's not our fault they can't spell properly. When
we come to name our functions and variables in JavaScript
though, we can use the proper spelling!

<script type="text/javascript">

funcRon changeColour(colour)
{
 document.getElementById('Hello').style.background = colour;
}

</script>

This function is supplied with a colour to use, and sets
our item called "Hello" (That's get Element By Id as in
identifier, not an "LD" by the way!) to have the specific
background colour. We can do the same with the colour for
the text in the box too!

funcRon changeColour(colour)
{
 document.getElementById('Hello').style.background = colour;
}

funcRon changeFontColour(colour)
{
 document.getElementById('Hello').style.color = colour;
}

</script>

That's quite an easy couple of functions. The next part
requires some variables, min and current, and will allow us
to increase and decrease the size of the text in the box!

funcRon changeFontColour(colour)
{
 document.getElementById('Hello').style.color = colour;
}

var min=8;
var current=12;

funcRon Bigger()
{
 current += 2;
 document.getElementById('Hello').style.fontSize = current+"px";

}

funcRon Smaller()
{
 if (current > min)
 {
 current -= 2;
 }
 document.getElementById('Hello').style.fontSize = current+"px";
}

</script>

Okay, another save and you should find that.... nothing
has changed in your application. That's because we haven't
put all the controls on screen yet! Let's add these in!

<div id="Menu">
A-
A+
Background:
Red
Blue
White
Font Colour:
Red
Blue
White
</div>

Save it, refresh in your browser and you should have:

Section Two - Setting up The
Vortex Runtime

Setting up your own system

V ortex requires a runtime system in order for a
computer to translate Vortex code into something
the computer understands. This therefore means

you are going to have to download a program and use this
to run Vortex code.

The Runtime engines are all available on the website
www.vortexcode.co.uk for you to download and use. There
is a version that works with ASP .NET web servers, which is
the version I use most regularly, a version that you can
install to windows based computers so that a Vortex
Application can run locally, and versions for other
platforms and devices. Also available are the dynamic
linked libraries (DLL's) which contain the latest versions of

http://www.vortexcode.co.uk

the commands that you will need to use to run the
applications with - the language is entirely modular, so you
can select to only have those dll's that you need to run your
project with as an extra form of security so that nobody can
perform commands that you don't want them to use (there
is another way of protecting your system like this with a
MAP file, which we shall move onto later in this section).

• Setting up the runtime on a server
• Registering an application name to receive an identifier
• Using SetupSettings.aspx to set up your application
• Setting up multiple applications on a single shared
runtime
• Changing the name of SetupSettings.aspx when
finished for security!
• Selecting a language for your DLL's (Currently only
English)
• Creating your own MAP files for commands to change
languages

Section Three - The Vortex
Language

TornadoScript

V ortex is not my first attempt at creating a language.
That honour goes to "TornadoScript" that was
designed to make games with. It was a very

straightforward language, but wasn't particularly flexible.
For example, this is the entire game "Space Invaders"
written in TornadoScript:-

// Space Invaders 1.0
// Created by Chris Lewis
// Written in TornadoScript
// Completed in December 2014

// Create the interface
CreateCamera 640 480 0 0 0 0 100 100 Cam1
SetInterface gfx

// Create the Classes for Bullet, Enemy Bullet and
Enemy
CreateClass Bullet
Set Size Width 5
Set Size Height 10
Set Velocity Y -6
Trigger 0 -20 640 20 BulletKill Frame

CreateClass EnemyBullet
Set Size Width 5
Set Size Height 10
Set Velocity Y 6
Trigger 0 480 640 20 BulletKill

CreateClass Enemy
Set Size Width 20
Set Size Height 20
Set Velocity X 5
Set Shape Ellipse
Trigger 640 0 20 480 EnemyRight Frame
Trigger -20 0 20 480 EnemyLeft Frame

CreateClass Barrier
Set Size Width 5
Set Size Height 10
Set Colour Green

CreateVariable EnemyX
Set 0
CreateVariable EnemyY
Set 20

CreateScript CreateEnemy
CreateObject
Set Class Enemy
Set Location X EnemyX
Set Location Y EnemyY
SelectVariable EnemyX
Inc 50
EndScript

CreateScript EnemyRow
SelectVariable EnemyX
Set 0
While EnemyX < 500 CreateEnemy
SelectVariable EnemyY
inc 50
EndScript

While EnemyY < 250 EnemyRow

SelectVariable EnemyX
Set 50
SelectVariable EnemyY
Set 350

CreateScript CreateBarrier
CreateObject
Set Class Barrier
Set Location X EnemyX
Set Location Y EnemyY
SelectVariable EnemyX
Inc 5
EndScript

CreateScript BarrierRow
SelectVariable EnemyX
Set 85
While EnemyX < 185 CreateBarrier
SelectVariable EnemyX
Set 270
While EnemyX < 370 CreateBarrier
SelectVariable EnemyX
Set 455
While EnemyX < 555 CreateBarrier
SelectVariable EnemyY
inc 10
EndScript

While EnemyY < 400 BarrierRow

// This section is for movement:

KeyDown Left MoveLeft
KeyDown Right MoveRight
KeyUp Left StopLeft
KeyUp Right StopRight

KeyUp Space PlayerBullet

CreateScript MoveLeft
SelectObject Player
Set Velocity X -5
EndScript

CreateScript MoveRight
SelectObject Player
Set Velocity X 5
EndScript

CreateScript Stop
SelectObject Player
Set Velocity X 0
EndScript

CreateScript StopLeft
if Player.Velocity.X < 0 Stop
EndScript

CreateScript StopRight
if Player.Velocity.X > 0 Stop
EndScript

CreateScript PlayerBullet
CreateObject
Set Class Bullet
Set Location X Player.Location.X
Inc Location X 20
Set Location Y Player.Location.Y
Set Velocity X 0
CollisionCode Enemy Destroy
CollisionCode Barrier Destroy
EndScript

CreateScript Destroy
KillObject this
KillObject that
EndScript

CreateScript EnemyBullet
CreateObject
Set Class EnemyBullet
Set Location X this.Location.X
Inc Location X 12
Set Location Y this.Location.Y
Set Velocity X 0
CollisionCode Player DestroyPlayer
CollisionCode Barrier Destroy
EndScript

CreateScript DestroyPlayer
SelectObject Player
Set Velocity X 0
Set Location X 300
EndScript

CreateScript MovePlayer
SelectObject Player
Move
SelectClass Bullet
Move
SelectClass EnemyBullet
Move
SimpleCollisions
EndScript

CreateScript MoveEnemy
StopTimer t2
RemoveDead
SelectClass Enemy
Move
ForEachIn Enemy EnemyFire
StartTimer t2
EndScript

CreateScript EnemyFire
Random 0 50
If Random > 48 EnemyBullet this
EndScript

// Time for the triggers
CreateScript EnemyRight
SelectClass Enemy
SetAll Velocity X -5
Inc Location Y 5
EndScript

CreateScript EnemyLeft
SelectClass Enemy
SetAll Velocity X 5
Inc Location Y 5
EndScript

CreateScript BulletKill
KillObject this
EndScript

//Create the player object
CreateObject Player
Set Size Width 40
Set Size Height 20
Set Location X 300
Set Location Y 460
Set Colour Green
Set Shape Rectangle
CreateTimer t2 500 MoveEnemy
StartTimer t2

If you can follow it, there is code to setup different
functions and code then to run these on timers or on
events such as collisions. You created "Classes" or object
types, and then set their location, velocity, size, and any
collision code you may need for that object, or keys that

could control it. For a game making language it was pretty
good - you could make anything from a "Mario" clone to a
text adventure, and it proved to be something that my
students found easier than C#, the language we generally
taught at my college. Without needing semi colons,
different namespaces and class structures, and the fact you
could run the code and change it while the program was
running as it was a script were all useful to them. But it was
designed around a very specific purpose. If I needed to
create a new command I had to build it into the
TornadoScript engine and the recompile the code and send
out a copy to everyone to use. There was nothing in the
way of error detection or prevention, and you may notice
that you cannot give an identifier to a specific object - you
had to refer to all the objects of a type, or build the code
you wanted directly into the object itself.

So, what does Vortex code look like?

<?
<!--
Last Updated: 3/4/20
Purpose: This is the main script that runs through
the system - it sets up the current server address
and then checks what command has been run and
processes it as required.
-->
<!-- This address is set up with the location of
the current server -->
Var "CurrentServerAddress" "https://
myserver.co.uk";
<!-- Start by just checking their identity is
current and registered -->
RunScriptFile "BuildIdentity.vtx";

<!--Just double check we have the CMD variable -->

If([Var.Exists "CMD"] == "False")
{

WriteLn "Error Code 001 - CMD Not Found";
StopScript;

};

<!-- Now what we do is based on what the command
variable CMD says: -->
Switch CMD
"File"
{

<!-- Just double check we have the
ScriptFileContent variable -->

If([Var.Exists "ScriptFileContent"] ==
"False")

{
WriteLn "Error Code 001 -

ScriptFileContent Not Found";
StopScript;

};
<!-- We need to run a script file then halt

the output -->
RunScriptFile [Combine ScriptFileContent

".vtx"];
 StopScript;
}
"LogoutUser"
{

<!-- Log the user out of the system,
clearing all cookies -->

Clear "SessionID";
Logout [WhoAmI ItemID] [SessionID];
RunScriptFile "loggedout.vtx";
StopScript;

}
"Direct"
{

<!-- Just double check we have the
ScriptFileContent variable -->

If([Var.Exists "ScriptFileContent"] ==
"False")

{
WriteLn "Error Code 001 -

ScriptFileContent Not Found";
StopScript;

};

<!-- The Script file content variable
contains all the direct data that is needed -->

RunScript [ScriptFileContent];
StopScript;

}
"Save"
{

<!-- This means that the content has to be
written to a file that has the filename set in the
variable "Filename" -->

If([Var.Exists "ScriptFileContent"] ==
"False")

{
WriteLn "Error Code 001 - File Content

Not Found";
StopScript;

};
If([Var.Exists "Filename"] == "False")
{

WriteLn "Error Code 002 - Filename Not
Found";

StopScript;
};
<!-- Level of protection - you can only save

files like this in your own area, and even then
only if the folder exists -->

If([Directory.Exists [Combine
"Documents/" [WhoAmI]]] == "False")

{
CreateDirectory "Documents" [WhoAmI];

};
WriteToFile Filename ScriptFileContent;
Write " ";
StopScript;

};

Write "Error Code 002 - Command Not Found";
Display ErrorLog;
Display DebugLog;
?>

Obviously, there are a lot of comments in this code. This
is my main program loop, if you like, which looks at what
command has been sent and then processes that command
with error protection (There's a lot of error protection still
not implemented here - see if you can spot it! Clue - what
happens if a script file is not found?)

The code really should be easy enough to understand -
WriteLn means write line, and writes the data on the screen
and then "presses enter" if you like, so the next thing
written is on the next line down. Var is used to refer to
Variables.

Vortex for Beginners

I 'm going to assume you have little or no knowledge
about programming, so are approaching this book with
no idea about how Wizard programmers create magic

spells to get these lumps of sand, rock and electricity to do
thy bidding. So I shall try to start at the very beginning, as it
is a very good place to start!

A computer program can only do three things. These
three things are called sequence, selection and iteration.
So, what do these mean? Let's discuss over a cup of tea!

• First of all, get a mug
• Get a tea bag
• Get a kettle
• Does the kettle have enough water in?
• If it doesn't, add more water
• Plug in the kettle
• Has the kettle boiled?
• If it hasn't wait again and check again.
• If it has, pour the water into the mug until it reaches a
nice high point

• Take a spoon
• Stir the tea bag
• Press the bag against the side to drain it
• Take out the tea bag
• Do you like sugar?
• If you do, sweeten to taste
• Do you like milk?
• Get out the milk from the fridge
• Pour out the correct amount of milk
• Stir the drink
And we are ready! I don't actually generally drink tea.

More of a coffee person.

So why discuss making a cup of tea?

Well, it is basically a computer program for telling a
person step by step how to get from dried leaves in a bag
and some water through to a final product. This is known
as an Algorithm - a series of steps to get from A to B. Let's
go back to the three things again:-

Sequence - one item after another
Selection - based on some information, choose which

path to take
Iteration - go round and round in a loop until a

condition is met.

In our cup of tea example - Green is sequence, orange is
selection and red is iteration:-

• Get a mug
• Get a tea bag
• Get a kettle

• Does the kettle have enough water in?
• If it doesn't, add more water
• Plug in the kettle
• Has the kettle boiled?
• If it hasn't wait again and check again.
• If it has, pour the water into the mug until it reaches a
nice high point
• Take a spoon
• Stir the tea bag
• Press the bag against the side to drain it
• Take out the tea bag
• Do you like sugar?
• If you do, sweeten to taste
• Do you like milk?
• Get out the milk from the fridge
• Pour out the correct amount of milk
• Stir the drink

So in this simple example, we can see that sequence,
selection and iteration all occur. We can show it in the form
of a flowchart to make things clearer:-

Wherever you see a box with an arrow to another box,
that is a sequence - one thing after another. When you see a
diamond and the arrows loop back on itself, that is an
iteration loop. A diamond is also a selection - you have one
of two paths to take, depending on the answer to the
question in the diamond being "yes" or "no". We could
actually turn this into a computer program. However, to do
that we need certain pieces of data. We need to know:-

• How much water in the kettle is "enough"?

• What temperature does the kettle boil at?
• How much water should be poured into the mug?
• How many sugars does the human want?
• How much milk does the human want?
• Why do some people add milk before removing the tea
bag?

When it comes to computer programs, we have to be
absolutely precise in the instructions that we give the
computer, and we have to be able to store data in short
term memory while the program is running - the RAM of
the computer. We store data by creating boxes that we can
fill with information. These we call "Variables", because the
value within that box can change. What variables do we
have in our flowchart?

Kettle - how much water it currently has inside it
KettleTemperature - what the temperature of the water is
Cup - how much water it currently has inside it
CupSugar - how many sugars are in the cup
CupMilk - how much milk is in the cup

Sugars - How many sugars the human wants
Milk - How much milk the human wants.

Now, finally, several pages in, we get to the bit where we
actually start turning this into code! We are going to make
our very first Vortex script. Firstly, we need to remember
the 10 rules of Vortex:-

1. Vortex code starts with <? and ends with ?>
2. A VTX Script file can contain web code (HTML, CSS,

JS, Etc) and Vortex code.

3. You can have multiple sections of Vortex code in a
single file.
4. Comments in Vortex code are surrounded by the

tags <!-- -->
5. Every Name being used, eg a Variable name, is in

speech marks
6. If the value of a variable etc is to be used, the name

is without speech marks
7. Every command in Vortex has the same format - the

command comes first, then the parameters, finally a
semi colon. Vortex is case sensitive.
8. Any conditional statements are in smooth brackets
9. Any sub items / code lines are in curly brackets
10. Compound commands (where a command is used

within a command) are in square brackets

Which of these are important for our program. Well, the
first thing I am going to do is write the start and end of the
script code:

<?
?>

Now, I am going to describe the program, step by step, as
a series of comments. This will help me in the future to
remember what this code does and how it works.

<?
<!-- Set all the variables for making a cup of tea
-->
<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
<!-- Is the temperature of the water 100 degrees?
-->
<!-- Does the cup have 250ml of water in? -->

<!-- Does the cup have enough sugar in? -->
<!-- Does the cup have enough milk in? -->
<!-- Finished! -->
?>

So I have my initial structure, I'm now going to create the
Variables to store the information in. To do this in Vortex
we use the command Var, give the box a name, and then
set the initial value of the box:-

<?
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;
<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
<!-- Is the temperature of the water 100 degrees?
-->
<!-- Does the cup have 250ml of water in? -->
<!-- Does the cup have enough sugar in? -->
<!-- Does the cup have enough milk in? -->
<!-- Finished! -->
?>

You can see that the names are in quotes, but the values
don't need to be. If the values I was storing in my boxes was
text, however, I would need to surround this in quotes too.
Otherwise, how would the code know if a space was part of
the text or moving on to another command?

You may notice that names don't have spaces either. Each
line of code finished with a semi colon, to tell the program
where each instruction finishes. This does mean that we

can have more than one instruction per line, but that can
make code hard to follow:

<?
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150; Var "KettleTemperature" 20; Var
"Cup" 0; Var "CupSugar" 0; Var "CupMilk" 0; Var
"Sugars" 1; Var "Milk" 50;
?>

Good quality code is something that is easy for another
programmer to read, so we try to keep our code as clear as
possible.

The next part of our code asks a question so must be a
conditional - does the kettle have 350ml of water in. Now,
there are two ways we can approach this:

1. if "kettle" is less than 350, change it to 350.
2. if "kettle" is less than 350, add another 50 and check
again. It's the same as saying 'While "kettle" is less than
350, add another 50'.

2 is the more realistic method we would use in the real
world - no tap I know of can just suddenly deposit a set
amount of water into a kettle already knowing how much is
in there! That means we are going to have to keep checking
- we have an iteration loop. We could use the key command
"while", which would look like this:-

While (Kettle < 350)
{
Var.Inc "Kettle" 50;
};

Let's break this command down. This is an example of a
compound command - a command that contains other
commands inside it. It could be written on a single line, but
it is clearer to read if we show it on multiple lines. We put
the "test" we are doing in a pair of standard "smooth"
brackets - Kettle < 350. Notice that this time, "kettle" is not
written in speech marks. That is because we want to use
the value that is stored inside the box, rather than referring
to the name of the box itself. The test condition will give us
one of two answers - "true" or "false". We tell the computer
program what we want it to do if the answer is "true" by
writing these lines of code between the curly brackets. If
the answer is "false", the program jumps to the end of the
curly brackets and continues running through the rest of
the program. The line of code in these brackets is an
"increment variable" command - eg add more into the box.
We can do the same for the water temperature:-

While (KettleTemperature < 100)
{

Var.Inc "KettleTemperature" 1;
};

We can use this same while command for adding milk
(5ml at a time) and adding sugar (1 spoonful at a time).
There is one difference though - to know how much milk to
add and how many sugars to add, we have to use the boxes
that contain those values too! Let's add all of those into our
code:-

<?
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;
<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
While (Kettle < 350)
{
 Var.Inc "Kettle" 50;
};

<!-- Is the temperature of the water 100 degrees?
-->
While (KettleTemperature < 100)
{
 Var.Inc "KettleTemperature" 1;
};

<!-- Does the cup have 250ml of water in? -->
<!-- Does the cup have enough sugar in? -->
While (CupSugar < Sugars)
{
 Var.Inc "CupSugar" 1;
};

<!-- Does the cup have enough milk in? -->
While (CupMilk < Milk)
{
 Var.Inc "CupMilk" 5;
};

<!-- Finished! -->
?>

You will notice that the lines of code inside the curly
brackets have been spaced further in - this is again to
improve readability for a programmer, so they can scan
with their eyes quickly and see what is a command inside a
conditional or iteration loop quickly.

We are almost there now! We just need to add the code to
pour water from the kettle into the cup. How do we do this?
Well, we are going to have to use two commands - we take
water out of the kettle with a "decrement" command, and
add it into the cup with our "increment" command. If we
use the same value for each, it is like the water is leaving
the kettle to go in the cup:

While (Cup < 250)
{
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
};

If we add this into our code:-

<?
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;
<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
While (Kettle < 350)
{
 Var.Inc "Kettle" 50;

};

<!-- Is the temperature of the water 100 degrees?
-->
While (KettleTemperature < 100)
{
 Var.Inc "KettleTemperature" 1;
};

<!-- Does the cup have 250ml of water in? -->
While (Cup < 250)
{
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
};
<!-- Does the cup have enough sugar in? -->
While (CupSugar < Sugars)
{
 Var.Inc "CupSugar" 1;
};

<!-- Does the cup have enough milk in? -->
While (CupMilk < Milk)
{
 Var.Inc "CupMilk" 5;
};

<!-- Finished! -->
?>

And we have a cup of tea! Don't we? Well, let's actually
run the program and find out! I'm using an iPad for Vortex,
hence the screen looks as follows:-

I used the "zoom out" button so all the code was visible
on the one screen. Now! The moment of truth! I click the
run button and see my cup of tea!

And... oh. It's a blank screen. How can we see what our
boxes contain? We haven't told the program to actually
write anything on the screen to tell us what is going on! If
you click the "debug" button on the shortcut bar, then click
"Variables", you can see that it has worked:

But how do we display this on the screen? We need to use
another command - WriteLn, which means write a line on
the screen! Let's start with reporting how much water is in
the kettle:

<?
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;
<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
WriteLn "Is there at least 350ml of water in the
kettle?";
While (Kettle < 350)

{
 Var.Inc "Kettle" 50;
WriteLn "Kettle now contains";
WriteLn Kettle;
WriteLn "mls of water.";
};

<!-- Is the temperature of the water 100 degrees?
-->
While (KettleTemperature < 100)
{
 Var.Inc "KettleTemperature" 1;
};

<!-- Does the cup have 250ml of water in? -->
While (Cup < 250)
{
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
};
<!-- Does the cup have enough sugar in? -->
While (CupSugar < Sugars)
{
 Var.Inc "CupSugar" 1;
};

<!-- Does the cup have enough milk in? -->
While (CupMilk < Milk)
{
 Var.Inc "CupMilk" 5;
};

<!-- Finished! -->
?>

The problem is, it doesn't look very neat on the screen:

If you run the program again, you now see it twice too!
Let's make this a bit better.

First of all, we can use the "Clear" command to wipe the
screen clear before we run the rest of the code.

Next, we could use "write" rather than "WriteLn" on some
of the output, so that the words all appear on the same line
together:

<?
Clear;
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;

<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->

WriteLn "Is there at least 350ml of water in the
kettle?";

While (Kettle < 350)
{
 Var.Inc "Kettle" 50;
Write "Kettle now contains";
Write Kettle;
WriteLn "ml of water.";
};

<!-- Is the temperature of the water 100 degrees?
-->
While (KettleTemperature < 100)
{
 Var.Inc "KettleTemperature" 1;
};

<!-- Does the cup have 250ml of water in? -->
While (Cup < 250)
{
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
};
<!-- Does the cup have enough sugar in? -->
While (CupSugar < Sugars)
{
 Var.Inc "CupSugar" 1;
};

<!-- Does the cup have enough milk in? -->
While (CupMilk < Milk)
{
 Var.Inc "CupMilk" 5;
};

<!-- Finished! -->
?>

Looking good!

Let's fill our program up with "Write" commands so we
can see it in action!

<?
Clear;
WriteLn "Let's make a cup of tea!";
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;
<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->

WriteLn "Is there at least 350ml of water in the
kettle?";
While (Kettle < 350)
{
 Var.Inc "Kettle" 50;
 Write "Kettle now contains";
 Write Kettle;
 WriteLn "ml of water.";
};
<!-- Is the temperature of the water 100 degrees?
-->
WriteLn "Let's boil the water! Keep an eye on the
temperature!";
While (KettleTemperature < 100)
{
 Write KettleTemperature;
 Write "... ";
 Var.Inc "KettleTemperature" 1;
};
WriteLn "Kettle boiled!";
WriteLn "Now to pour the water into the cup!";
<!-- Does the cup have 250ml of water in? -->
While (Cup < 250)
{
 Write Cup;
 Write "... ";
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
};
WriteLn "Cup full!";
<!-- Does the cup have enough sugar in? -->
While (CupSugar < Sugars)
{
 WriteLn "Add sugar... ";
 Var.Inc "CupSugar" 1;
};
WriteLn "Give it a stir!";
WriteLn "Take out the tea bag."
Write "Adding milk ";
<!-- Does the cup have enough milk in? -->
While (CupMilk < Milk)

{
 Var.Inc "CupMilk" 5;
 Write CupMilk;
 Write "... ";
};
WriteLn "Milk in!";
WriteLn "All finished!";
<!-- Finished! -->
?>

Run the program, and it should look like the screen
above!

The Algorithm is never finished!

P rogrammers have a real issue - if they are given free
rein, we never really finish a project. Take "How to
make a cup of tea" we just made. Surely it's done

now, right?

Never!!!

I could make quite a few changes to make it even better.
I'll show you the code first, then talk about some of the new
features!

<?
Clear;
WriteLn "Let's make a cup of tea!";
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;
<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
If(Kettle < 350)
{
 WriteLn "There isn't enough water in the
kettle - top it up!";
 While (Kettle < 350)
 {
 Var.Inc "Kettle" 50;
 WriteLn [Combine "Kettle now contains "
Kettle "ml of water."];
 };
 WriteLn "We now have enough water in the
kettle!";
};
WriteLn "We should put a tea bag in the cup I
guess.";
If(KettleTemperature < 100)
{
 <!-- Is the temperature of the water 100
degrees? -->
 WriteLn "The water in the kettle is too cold!
Keep an eye on the temperature!";
 While (KettleTemperature < 100)
 {
 Write [Combine KettleTemperature " . . . "];
 Var.Inc "KettleTemperature" 1;
 };
 WriteLn "Kettle now boiled!";

};
WriteLn "Now to pour the water into the cup!";
WriteLn "We need to fill it to the 250ml line.
Let's count up!";
<!-- Does the cup have 250ml of water in? -->
While (Cup < 250)
{
 Write [Combine Cup " . . . "];
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
};
WriteLn "Cup full!";
WriteLn [Combine "There is only " Kettle "ml left
in the Kettle."];
If(CupSugar < Sugars)
{

WriteLn "This Tea is not sweet enough! Needs
Sugar!";
 <!-- Does the cup have enough sugar in? -->
 While (CupSugar < Sugars)
 {
 If(CupSugar == 0)
 {
 WriteLn "Adding a sugar!";
 }
 Else
 {
 WriteLn "Still not sweet enough! More
Sugar!";
 };
 Var.Inc "CupSugar" 1;
 };
};
WriteLn "Give it a stir!";
WriteLn "Take out the tea bag.";
If (CupMilk < Milk)
{
 WriteLn "Don't like black tea - adding milk ";
 <!-- Does the cup have enough milk in? -->
 While (CupMilk < Milk)
 {

 If(CupMilk > 0)
 {
 WriteLn "Still too dark! More Milk!";
 };
 Var.Inc "CupMilk" 5;
 };
};
WriteLn "Perfect!";
WriteLn "All finished!";
<!-- Finished! -->
?>

It may not seem like much, but this version has some
important differences to the first version, which I have
highlighted in the code.

1. On the first version, I had to use multiple "write"
statements to be able to add the value of the variable
into what was written on the screen. There is another
command, "Combine", which can merge all the text
together. Because this command is being used inside
another command (the "Write" command) we surround
it with square brackets so the script knows to process
this as a separate command.

2. We only show some of the sections if there is a need
to - for example, if the user had 0 sugars, there should
be no mention of sugar on the output. To add these
conditions in, I used the "If" conditional statement.

So, what are these two new features? Combine is a
simple command to join together text from several pieces,
but it is a command that doesn't really do anything on its
own - it needs to be used with another command to give it
its power. For example, what if I wanted to store someone's
age inside some text in a variable, let's see what wouldn't
work:

<!-- Set the age -->
Var "Age" 30; <!-- This works! -->
<!-- Set the text -->
Var "AgeText" "You are " Age " years old!"; <!--
This doesn't -->

You can't set three pieces of information into a single
variable - you have to combine them. In Vortex, it is clear
where you are performing more than one instruction on a
line of code, as each extra instruction is surrounded by
square brackets. This code should look like:

<!-- Set the age -->
Var "Age" 30;
<!-- Set the text -->
Var "AgeText" [Combine "You are " Age " years
old!"];

So when the code runs, it "sees" the square brackets
inside and runs that command first, then replaces it with
the output of that code for the outer command. It is the
equivalent of the line of code changing like this:

Var "AgeText" [Combine "You are " Age " years
old!"];
Var "AgeText" [Combine "You are " 30 " years
old!"];
Var "AgeText" "You are 30 years old!";

You may also notice that I had to add spaces into the text
in speech marks as well, so that they appear in the text at
the end - otherwise the 30 will be sandwiched onto the
other two words!

Combine is therefore a pretty useful function, when used
with a second one.

Our main conditional in programming is the "if"
statement. There are five ways we can use it:-

If (something is true) { do this }
All paths then do this

If (something is true) { do this }
Otherwise If (something else is true) { do this }
All paths then do this

If (something is true) { do this }
if not { do this instead }
All paths then do this

If (something is true) { do this }
Otherwise If (something else is true) { do this }
if not { do this instead }
All paths then do this

In Vortex, we use the command "If" and "Else" if we need
to do something else instead. Let's take an example.
Imagine we need to write how many apples are in a bag. If
there isn't anything, it should write "the bag is empty". If
there is one Apple it should say "there is 1 apple in the bag",
otherwise it says "there are X apples in the bag", where X is
how many there are :-

Var "apples" 12;
If (apples == 0)
{
Write "The bag is empty.";

}
(apples == 1)
{
Write "There is 1 Apple in the bag.";
}
Else
{
Write [Combine "There are " apples " in the
bag."];
};

Each piece of code is in curly brackets, while each test is
in smooth brackets. Note that the final curly bracket has a
semi colon after it, and after the initial "If" command, you
just need to do the test and code for that test, unless the
keyword "Else" is used. All tests are logical, so have to end
up being true or false. The sorts of tests you can use are:-

• == equal
• != not equal
• < less than
• > greater than
• <= less or equal
• >= greater or equal

While what we have done so far improves the
functionality of the code, it doesn't improve the display. We
are outputting to a web browser, so we can use HTML tags
as a way of formatting the text. Maybe now would be a good
time for a quick lesson in HTML and CSS! Then we can look
at how we can make our algorithm prettier on the screen!

Making our cup of tea pretty

I 'm going to take the original code we created, and
make it a bit more presentable from what we have
learned from using HTML and CSS. I am using

"inline" CSS here, which means that we use style=""
within the tag itself to set the CSS for the object.

Firstly, I have decided to put the title in <h1></h1> tags, so
it appears as a title on the page.

Secondly, I have created a "kettle" using <div> tags. I have
done this by creating a box that is 180 pixels wide by 250
pixels tall, and setting the colour inside to blue, and inside
this box I add another box coloured white, whose height
changes with the amount of water that is in the kettle. This
way we can make the kettle appear to fill with water, in fact

by shrinking the size of the white internal box. <div> boxes
are normally on a line by themselves, so I need to use CSS
to tell them to "float" next to each other instead. On the line
after these being added to the screen we need to add a
special box to say "no longer float please" by using the CSS
command "clear:both;".

Next, I use RGB colour knowledge and the temperature
of the kettle water to change the colour of the background
around the words to show cold as green and hot as red, and
you can see this increase in the output.

Next, I have created a cup using the same technique as
the kettle, albeit smaller on the screen, to graphically fill
up.

Finally, in an overhead view of the tea, I created a circle
shape from a div using the CSS command "border-radius" to
round the edges of the square. In this, I change the colour
to reflect how much milk has been added.

Let's look at the code, highlighting the new parts -

<?
Clear;
WriteLn "<h1>Let's make a cup of tea!</h1>";
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;

<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
If(Kettle < 350)
{
 WriteLn "There isn't enough water in the
kettle - top it up!";
 Write [Combine "<div style=\"float:left;
width:180px; height:250px; border: 1px solid
#999999; background-color:blue;\"><div
style=\"width:180px; height:" [Calculate [Combine
"250 - (" Kettle "/2)"]] "px; background-
color:white;\">Kettle contains " Kettle "ml of
water.</div></div>"];
 While (Kettle < 350)
 {
 Var.Inc "Kettle" 50;
 Write [Combine "<div style=\"float:left;
width:180px; height:250px; border: 1px solid
#999999; background-color:blue;\"><div
style=\"width:180px; height:" [Calculate [Combine
"250 - (" Kettle "/2)"]] "px; background-
color:white;\">Kettle now contains " Kettle "ml of
water.</div></div>"];
 };
 WriteLn "<div style=\"clear:both;\"></div>We
now have enough water in the kettle!";
};
WriteLn "We should put a tea bag in the cup I
guess.";
If(KettleTemperature < 100)
{
 <!-- Is the temperature of the water 100
degrees? -->
 WriteLn "The water in the kettle is too cold!
Keep an eye on the temperature!";
 While (KettleTemperature < 100)
 {
Write [Combine "<span style=\"background-
color:rgb("
[Calculate [Combine "(" KettleTemperature
"*2.5)"]] ","

[Calculate [Combine "255 - (" KettleTemperature
"*2.5)"]] ",0);\">" KettleTemperature " . . . </
span>"];
 Var.Inc "KettleTemperature" 1;
 };
 WriteLn "Kettle now boiled!";
};
WriteLn "Now to pour the water into the cup!";
WriteLn "We need to fill it to the 250ml line.";
<!-- Does the cup have 250ml of water in? -->
While (Cup < 250)
{
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
 Write [Combine "<div style=\"margin:2px;
float:left; width:50px; height:70px; border: 1px
solid #999999; background-color:rgb(17,8,0);
\"><div style=\"width:50px; height:" [Calculate
[Combine "70 - (" Cup "/5)"]] "px; background-
color:white;\"></div></div>"];
};
WriteLn "<div style=\"clear:both;\"></div>Cup
full!";
WriteLn [Combine "There is only " Kettle "ml left
in the Kettle."];
 Write [Combine "<div style=\"width:180px;
height:250px; border: 1px solid #999999;
background-color:blue;\"><div style=\"width:180px;
height:" [Calculate [Combine "250 - (" Kettle "/
2)"]] "px; background-color:white;\"></div></
div>"];
If(CupSugar < Sugars)
{

WriteLn "This Tea is not sweet enough! Needs
Sugar!";
 <!-- Does the cup have enough sugar in? -->
 While (CupSugar < Sugars)
 {
 If(CupSugar == 0)
 {
 WriteLn "Adding a sugar!";

 }
 Else
 {
 WriteLn "Still not sweet enough! More
Sugar!";
 };
 Var.Inc "CupSugar" 1;
 };
};
WriteLn "Give it a stir!";
WriteLn "Take out the tea bag.";

If (CupMilk < Milk)
{
 WriteLn "Don't like black tea - adding milk ";
 <!-- Does the cup have enough milk in? -->
 While (CupMilk < Milk)
 {
Write "<div style=\"float:left;border: solid 1px
#777777; border-radius:40px;
width:80px;height:80px;background-
color:rgb(" [Calculate [Combine "16+(" CupMilk
"*2)"]] "," [Calculate [Combine "8+(" CupMilk
")"]] ",0);\"></div>";
 Var.Inc "CupMilk" 5;
 };
};
WriteLn "<div style=\"clear:both;\"></
div>Perfect!";
WriteLn "All finished!";
<!-- Finished! -->
?>

Because the new page doesn't fit nicely into a screenshot,
let's just show you what it looks like:-

Let's make a cup of tea!

There isn't enough water in the kettle - top it up!

We now have enough water in the kettle!
We should put a tea bag in the cup I guess.
The water in the kettle is too cold! Keep an eye on the

temperature!
20 . . . 21 . . . 22 . . . 23 . . . 24 . . . 25 . . . 26 . . . 27 . . .

28 . . . 29 . . . 30 . . . 31 . . . 32 . . . 33 . . . 34 . . . 35 . . . 36 . . .
37 . . . 38 . . . 39 . . . 40 . . . 41 . . . 42 . . . 43 . . . 44 . . . 45 . . .
46 . . . 47 . . . 48 . . . 49 . . . 50 . . . 51 . . . 52 . . . 53 . . . 54 . . .
55 . . . 56 . . . 57 . . . 58 . . . 59 . . . 60 . . . 61 . . . 62 . . . 63 . . .
64 . . . 65 . . . 66 . . . 67 . . . 68 . . . 69 . . . 70 . . . 71 . . . 72 . . .
73 . . . 74 . . . 75 . . . 76 . . . 77 . . . 78 . . . 79 . . . 80 . . . 81 . . .
82 . . . 83 . . . 84 . . . 85 . . . 86 . . . 87 . . . 88 . . . 89 . . . 90 . . .
91 . . . 92 . . . 93 . . . 94 . . . 95 . . . 96 . . . 97 . . . 98 . . . 99 . . .
Kettle now boiled!

Now to pour the water into the cup!
We need to fill it to the 250ml line.

Cup full!
There is only 100ml left in the Kettle.

This Tea is not sweet enough! Needs Sugar!
Adding a sugar!
Give it a stir!
Take out the tea bag.
Don't like black tea - adding milk

Perfect!
All finished!

We should look closer at the kettle code, as it initially
looks like a very complicated line of code, and analyse this
out:-

 Write [Combine "<div style=\"float:left;
width:180px; height:250px; border: 1px solid
#999999; background-color:blue;\"><div
style=\"width:180px; height:" [Calculate [Combine
"250 - (" Kettle "/2)"]] "px; background-
color:white;\">Kettle contains " Kettle "ml of
water.</div></div>"];

While this looks complicated, we can break it down into
blocks to show it clearer:-

Write
[Combine

"<div style=\"float:left; width:180px;
height:250px; border: 1px solid #999999;
background-color:blue;\"><div style=\"width:180px;
height:"

[Calculate
 [Combine "250 - (" Kettle "/2)"]
]
"px; background-color:white;\">Kettle

contains " Kettle "ml of water.</div></div>"
];

Everything in blue is the HTML code - it is telling us to
create an outer box in blue and an inner box in white. We
get to the "height" of this white box, and we need to work it
out based on the calculation 250-(Kettle current level / 2).
Why these numbers? Well, my kettle is only going to hold
500ml of water. To show this smaller on the screen, I am
scaling it down by a factor of 2, to 250 pixels in height. If
there is no water in the kettle, the white box should be 250
pixels high too. With every 2 ml of water added, we should

reduce this height by 1 pixel. We can use the command
"Calculate" and then put the calculation we need to
process into a piece of text, but to use the variable inside
that piece of text we have to use our "Combine" command.
Say Kettle = 350, lets see the process of this turning into a
single piece of text within our code :-

[Calculate [Combine "250 - (" Kettle "/2)"]]

Change "Kettle" into its value of 350

[Calculate [Combine "250 - (" 350 "/2)"]]

Combine the text together

[Calculate "250 - (350/2)"]

And calculate!

"75"

So this sets our height of the white box to 75 pixels.

The background colour change for the temperature
works in the same way, changing the Red and Green
background values based on the current temperature:-

Write [Combine "<span style=\"background-
color:rgb(" [Calculate [Combine "("
KettleTemperature "*2.5)"]] "," [Calculate
[Combine "255 - (" KettleTemperature "*2.5)"]]
",0);\">" KettleTemperature " . . . "];

Again, we should break this down a bit:-

Write
[Combine

"<span style=\"background-color:rgb("
[Calculate
 [Combine
 "(" KettleTemperature "*2.5)"
]
]
","
[Calculate

[Combine
"255 - (" KettleTemperature

"*2.5)"
]

]
",0);\">"
KettleTemperature
" . . . "

];

This time, we are using the variable KettleTemperature,
and using a tag rather than div, so it is all in
line. We are setting the background colour (which we have
to write American in CSS) with a specific RGB value, based
on the kettle temperature. If this temperature is 60, let's
process this entire line of code, section by section:

Replace KettleTemperature with "60":

Write
[Combine

"<span style=\"background-color:rgb("
[Calculate
 [Combine
 "(" 60 "*2.5)"
]
]
","
[Calculate

[Combine
"255 - (" 60 "*2.5)"

]
]
",0);\">"
60
" . . . "

];

Now Combine:

Write
[Combine

"<span style=\"background-color:rgb("
[Calculate "(60*2.5)"]
","
[Calculate "255-(60*2.5)"]
",0);\">"
60
" . . . "

];

Perform the calculations:

Write
[Combine

"<span style=\"background-color:rgb("
150
","
105
",0);\">"
60
" . . . "

];

Finally combine:

Write "<span style=\"background-color:rgb(150,
105, 0);\">60 . . . ";

And we have our "60 . . ." In the correct colour! Or, with a
simple change in the code, perhaps you would like your
water to heat up from blue?

20 . . . 21 . . . 22 . . . 23 . . . 24 . . . 25 . . . 26 . . . 27 . . . 28 . . .
29 . . . 30 . . . 31 . . . 32 . . . 33 . . . 34 . . . 35 . . . 36 . . . 37 . . .
38 . . . 39 . . . 40 . . . 41 . . . 42 . . . 43 . . . 44 . . . 45 . . . 46 . . .
47 . . . 48 . . . 49 . . . 50 . . . 51 . . . 52 . . . 53 . . . 54 . . . 55 . . .
56 . . . 57 . . . 58 . . . 59 . . . 60 . . . 61 . . . 62 . . . 63 . . . 64 . . .
65 . . . 66 . . . 67 . . . 68 . . . 69 . . . 70 . . . 71 . . . 72 . . . 73 . . .
74 . . . 75 . . . 76 . . . 77 . . . 78 . . . 79 . . . 80 . . . 81 . . . 82 . . .
83 . . . 84 . . . 85 . . . 86 . . . 87 . . . 88 . . . 89 . . . 90 . . . 91 . . .
92 . . . 93 . . . 94 . . . 95 . . . 96 . . . 97 . . . 98 . . . 99 . . .

To do this, instead of changing the Green part of the RGB,
we change the Blue in its place and set green to zero. See if
you can do it yourself!

Scripts & Functions

S o far, the examples you have seen involve having a
single script that we are running on a page. However,
when (again) looking at making a cup of tea, there are

some lines of code that could just be HTML outside of the
script itself. Vortex can allow you to have multiple scripts
within a single HTML file. For example below, there are two
scripts, highlighted in yellow :-

<html>
<head>

<title>How to make a cup of tea</title>
</head>
<body>
<h1>Let's make a cup of tea!</h1>

<?
<!-- Set all the variables -->

Var "Kettle" 150;
Var "KettleTemperature" 20;

?>
<p>Let's look at how much water we have in the
kettle:</p>
<?

WriteLn [Combine "Kettle contains " Kettle
"ml of water"];
?>
</body>
</html>

You can have as many scripts in a single HTML file as you
wish. You may also notice that variables created in one
script can be utilised in any other subsequent script, while
the session is still active. Sometimes this can be a better
and faster way of structuring your code, as Vortex code is
slower than just using HTML directly, as we shall see when
we get to caching.

We can utilise HTML to make our code a bit tidier as well.
Take the line:-

Write [Combine "<div style=\"float:left;
width:180px; height:250px; border: 1px solid
#999999; background-color:blue;\"><div
style=\"width:180px; height:" [Calculate [Combine
"250 - (" Kettle "/2)"]] "px; background-
color:white;\">Kettle now contains " Kettle "ml of
water.</div></div>"];

There is a lot of CSS in that line of code, representing the
kettle in our pictorial view. This could be put into a CSS
style tag at the top of the page:-

.KettleFull
{

margin:2px;
float:left;
width:180px;
height:250px;
border: 1px solid #999999;
background-color:blue;

}

.KettleEmpty
{

width:180px;
background-color:white;

}

Then we can change our code to use these classes
instead:-

Write [Combine "<div class=\"KettleFull\"><div
class=\"KettleEmpty\" style=\"height:" [Calculate
[Combine "250 - (" Kettle "/2)"]] "px;\">Kettle
now contains " Kettle "ml of water.</div></div>"];

Not only does this make the code easier to read, but it
actually shrinks down the amount of text that needs to be
downloaded from the server to the website, so can make
the website faster!

There is another way we can make our code a bit tidier
too. A function in programming is a piece of code that does
a specific task. If you have to do the same thing over and
over again in your code, instead of writing it over and over,
you can write it once in a function and just tell the program
to run the function where you want the code to be used.

In our making of a cup of tea, we use the piece of code
that draws the kettle in three different parts - reporting at

the start how much water there is in the kettle, in the loop
as we add water to the kettle, and then finally at the end
after removing some of the water from the kettle into the
cup. Currently in our code we are just repeating the
command to write out the kettle, but we could do this in a
function instead :-

Function "ShowKettle"
{

Write [Combine "<div
class=\"KettleFull\"><div class=\"KettleEmpty\"
style=\"height:" [Calculate [Combine "250 - ("
Kettle "/2)"]] "px;\">Kettle now contains "
Kettle "ml of water.</div></div>"];
};

A function has to appear in the code before the point
where it is called, which now in our code looks like:-

<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
If(Kettle < 350)
{

WriteLn "There isn't enough water in the
kettle - top it up!";

ShowKettle;
 While (Kettle < 350)
 {

Var.Inc "Kettle" 50;
ShowKettle;

 };
 WriteLn "<div style=\"clear:both;\"></div>We
now have enough water in the kettle!";
};

As you look through the code, you will see other places
where we can use this technique to tidy up the program,
yet still make it work exactly the same as it currently does.

This leads us to yet another version of "How to make a cup
of tea", and this time I'm highlighting the sections that are
HTML by having them in boxes, and the Functions or
where a function is called in yellow.

<html>
<head>
<Rtle>
How to make a cup of tea
</Rtle>

<style>

.KetleFull
{
margin:2px;
 float:lef;
 width:180px;
 height:250px;
 border: 1px solid #999999;
 background-color:blue;
}

.KetleEmpty
{
 width:180px;
 background-color:white;
}

.CupFull
{
margin:2px;
float:lef;
width:50px;
height:70px;
border: 1px solid #999999;

background-color:rgb(17,8,0);
}

.CupEmpty
{
 width:50px;
 background-color:white;
}

.CupMilk
{
float:lef;
border: solid 1px #777777;
border-radius:40px;
width:80px;
height:80px;
}

</style>

</head>
<body>
<h1>Let's make a cup of tea!</h1>

<?
<!-- Set all the variables for making a cup of tea
-->
Var "Kettle" 150;
Var "KettleTemperature" 20;
Var "Cup" 0;
Var "CupSugar" 0;
Var "CupMilk" 0;
Var "Sugars" 1;
Var "Milk" 50;
<!-- This is where the functions will go -->
Function "ShowKettle"
{

Write [Combine "<div
class=\"KettleFull\"><div class=\"KettleEmpty\"
style=\"height:" [Calculate [Combine "250 - ("
Kettle "/2)"]] "px;\">Kettle now contains "
Kettle "ml of water.</div></div>"];
};

Function "ShowCup"
{
 Var.Dec "Kettle" 10;
 Var.Inc "Cup" 10;
 Write [Combine "<div class=\"CupFull\"><div
class=\"CupEmpty\" style=\"height:" [Calculate
[Combine "70 - (" Cup "/5)"]] "px;\"></div></
div>"];
};

Function "ShowMilk"
{

Write "<div style=\"float:left;border: solid
1px #777777; border-radius:40px;
width:80px;height:80px;background-
color:rgb(" [Calculate [Combine "16+(" CupMilk
"*2)"]] "," [Calculate [Combine "8+(" CupMilk
")"]] ",0);\"></div>";
 Var.Inc "CupMilk" 5;
};

Function ShowTemperature
{

Write [Combine "<span style=\"background-
color:rgb("
[Calculate [Combine "(" KettleTemperature
"*2.5)"]] ",0,"
[Calculate [Combine "255 - (" KettleTemperature
"*2.5)"]] ");\">" KettleTemperature " . . . </
span>"];
 Var.Inc "KettleTemperature" 1;
};

<!-- Does the kettle have 350ml of water in?
(That's just enough to cover the filament) -->
If(Kettle < 350)
{

WriteLn "There isn't enough water in the
kettle - top it up!";

ShowKettle;
 While (Kettle < 350)
 {

Var.Inc "Kettle" 50;
ShowKettle;

 };
 WriteLn "<div style=\"clear:both;\"></div>We
now have enough water in the kettle!";
};
WriteLn "We should put a tea bag in the cup I
guess.";
If(KettleTemperature < 100)
{
 <!-- Is the temperature of the water 100
degrees? -->
 WriteLn "The water in the kettle is too cold!
Keep an eye on the temperature!";
 While (KettleTemperature < 100)
 {

ShowTemperature;
 };
 WriteLn "Kettle now boiled!";
};
?>
Now to pour the water into the cup!

We need to fill it to the 250ml line.

<?
<!-- Does the cup have 250ml of water in? -->
While (Cup < 250)
{

ShowCup;
};
WriteLn "<div style=\"clear:both;\"></div>Cup
full!";
 ShowKettle;

Write "<div style=\"clear:both;\">";
If(CupSugar < Sugars)
{

WriteLn "This Tea is not sweet enough! Needs
Sugar!";
 <!-- Does the cup have enough sugar in? -->
 While (CupSugar < Sugars)
 {
 If(CupSugar == 0)
 {
 WriteLn "Adding a sugar!";
 }
 Else
 {
 WriteLn "Still not sweet enough! More
Sugar!";
 };
 Var.Inc "CupSugar" 1;
 };
};
?>
Give it a sRr!

Take out the tea bag.

<?
If (CupMilk < Milk)
{
 WriteLn "Don't like black tea - adding milk ";
 <!-- Does the cup have enough milk in? -->
 While (CupMilk < Milk)
 {

ShowMilk;
 };
};
?>
<div style="clear:both;"></div>
Perfect!

All finished!
<!-- Finished! -->
</body>
</html>

Functions seem easy to call and use, but what if you have
a function that you have to send information to? For
example, say I wanted to write a program that could add
two numbers together. Our function could look like:-

Function "AddTogether" ("one" "two")
{
Var "Three" [Calculate [Combine one "+" two]];
};

So the function takes two input values, one and two, and
produces the result into a variable which we can then use
in our code, such as:-

<html>
<head>
<title>Using inputs with functions</title>
</head>
<body>
<?
Function "AddTogether" ("one" "two")
{
Var "Three" [Calculate [Combine one "+" two]];
};
Clear;
AddTogether ("4" "4");
Write Three;
?>
</body>
</html>

Now, while it works (We can run this and see it comes up
with 8), it isn't particularly great - wouldn't it be better to be
able to return the value to the code that called the function
directly? Lucky we can Return the result as well!

<html>

<head>
<title>Using returning function</title>
</head>
<body>
<?
Function "AddTogether" ("one" "two")
{
Return [Calculate [Combine one "+" two]];
};
Clear;
Write [AddTogether ("4" "4")];
?>
</body>
</html>

Then you can use the result directly in the code without
needing to resort to variables.

In the same way that you can call functions and give
them inputs, you can add "templates" to scripts that you
indicate within the script, then when you use RunScript it
can send this information through to the script, again
without needing to worry about utilising variables.

In the script you are using as a template, where you want
the first variable data to go you write {0} including the
brackets. For where you want the next variable, {1}, and so
on, for as many inputs as you need. Let's look at a script,
which I am going to call "HelloEveryone":

<?
<!-- This is a template script, you should call it
from 04e rather than running this directly -->

WriteLn "This is a calling script that uses a
template and was created by {0} to show just how
templates can work!";
Var "FirstName" "{0}";

Var "Surname" "{1}";
WriteLn [Combine FirstName " " Surname " created
this template and accessed everything here!"];
?>

Now we can call this, supplying it with both the forename
and the surname, from another script:-

<?
RunScriptFile "Examples/04d-HelloEveryone.vtx"
"Chris" "Lewis";
?>

I appreciate this is a bit of a whistle-stop tour of these
features, but we will be coming back to them again and
again throughout the rest of the book, I'm sure!

Components

V ortex has another trick up its sleeve when it comes
to making website applications much more
manageable. You can have packaged "components"

that you can use to insert multiple copies of a control into a
website very quickly and easily. It's easy to make your own
components as well. As with everything, it's best to see an
example.

Let's start with a simple control - text that you can click
on, it changes to a drop down list, you select something
and it changes the text.

<html>
<head>
<title>Test Clicker</title>

<script type="text/javascript">

function LabelClick(id)
{

document.getElementById(id+".Text").style.display
= "none";

document.getElementById(id+".Choice").style.displa
y = "inline";
}

function OnChange(id)
{

document.getElementById(id+".Text").style.display
= "inline";

document.getElementById(id+".Choice").style.displa
y = "none";

document.getElementById(id+".Text").innerHTML =
document.getElementById(id+".Choice").value;
}

</script>
</head>
<body>
<?

VarArray "ID.Array" "One" "Two" "Three";
?>
<span ID="ID.Text"
onclick="LabelClick('ID');">One
<?
HTML.Dropdown "ID.Choice" ID.Array
"OnChange('ID')" {"style" "display:none";};

?>
</body>
</html>

This looks as follows:-

Then you tap:-

And change the dropdown:-

To get:-

Now, if I wanted two of these controls, being quite a
simple control, the code doesn't get much bigger :-

<html>
<head>
<title>Test Clicker</title>
<script type="text/javascript">

function LabelClick(id)
{

document.getElementById(id+".Text").style.display
= "none";

document.getElementById(id+".Choice").style.displa
y = "inline";
}

function OnChange(id)
{

document.getElementById(id+".Text").style.display
= "inline";

document.getElementById(id+".Choice").style.displa
y = "none";

document.getElementById(id+".Text").innerHTML =
document.getElementById(id+".Choice").value;
}

</script>
</head>
<body>
<?

VarArray "ID.Array" "One" "Two" "Three";
?>
<span ID="ID.Text"
onclick="LabelClick('ID');">One

<?
HTML.Dropdown "ID.Choice" ID.Array
"OnChange('ID')" {"style" "display:none";};

?>

<?

VarArray "ID2.Array" "One" "Two" "Three";
?>
<span ID="ID2.Text"
onclick="LabelClick('ID2');">One
<?
HTML.Dropdown "ID2.Choice" ID2.Array
"OnChange('ID2')" {"style" "display:none";};

?>
</body>
</html>

But you do have to keep track of what needs changing in
each copy and paste, as you can see with the yellow
highlight, and it is easy to make a mistake. Let's make this
into a component instead!

<?
Component.Template "Clicker"
{
<?
AddJSInternal "LabelClick"
{
function LabelClick(id)
{

document.getElementById(id+".Text").style.display
= "none";

document.getElementById(id+".Choice").style.displa
y = "inline";
}

};

AddJSInternal "OnChange"
{
function OnChange(id)
{

document.getElementById(id+".Text").style.display
= "inline";

document.getElementById(id+".Choice").style.displa
y = "none";

document.getElementById(id+".Text").innerHTML =
document.getElementById(id+".Choice").value;
}
};
VarArray "{0}.Array" "One" "Two" "Three"; ?>
<span ID="{0}.Text"
onclick="LabelClick('{0}');">One
<?
HTML.Dropdown "{0}.Choice" {0}.Array
"OnChange('{0}')" {"style" "display:none";};
?>
};
?>

<html>
<head>
<title>Test Clicker</title>

<?
AddJSPlaceholder;
?>
</head>
<body>
<?
Component.Create "Clicker" "c1";
Component.Create "Clicker" "c2";
?>
</body>

</html>

You can see the script highlighted in yellow at the top
sets up the component. After we have it set up, our script is
very simple - AddJSPlaceholder is used to tell the script
where to add in all of the required JavaScript, but actually
using the component is a single line where you specify an
identifier. This top component script could easily be a
separate script file that is used with "RunScriptFile". There
are commands which we need to use when dealing with
components:

AddJSPartDelayed - adds the JSPart file, but stores it in
memory rather than writing it out to the document.

AddJSInternal - Rather than adding the JSPart file to
memory, this adds in specific JavaScript functions into
memory and gives it a name.

Component.Template - This creates some template
Vortex code into memory and gives this a name as well.

Component.Create - This uses the template specified
and fills out the template with the data as required,
inserting it into the output document.

There is another part to components - you can use them
with CSS in the same way as JavaScript too! This needs to
use some similar-but-css based commands -
AddCSSPlaceholder to add in where we want our CSS to
go, and AddCSSPartDelayed adding a CSS class, style or
what have you but storing it in memory rather than writing
it out to the document.

The example I am going to use for this is an improvement
to the standard HTML range control, the code for which

was worked out by Michael Dowden (@mrdowden on
twitter) who has given his permission for me to use it here.

A normal range control in HTML does not show the
minimum and maximum values next to it - you have to
create text at the start and end of it if you want to have
these figures shown. There turns out to be a specific CSS
hack that can show these values for you:-

input[type='range']::before {
 content: atr(min);
 margin-lef: -1.5ch;
}
input[type='range']::afer {
 content: atr(max);
 margin-right: -3ch;
}

You can use the "attr" command to get the attribute, then
show the minimum or maximum values, and in this case
we are going to move them to be just before and after the
control. Adding this in specifically would automatically
change all inputs of type range to have these figures,
although we can set them up as part of a class command
instead, which is what we are going to do in our
component.

So, without further ado, let me show you the code for the
component and the test HTML for the component to be
loaded on:-

<?

Component.Template "Slider"
{

<?
AddCSSPartDelayed ".rangeNo" "margin: 0ex 6ch;";
AddCSSPartDelayed ".rangeNo::before" "content:
attr(min); margin-left: -1.5ch;";
AddCSSPartDelayed ".rangeNo::after" "content:
attr(max); margin-right: -3ch;";

<!-- Needs the identifier, value, min then
max: -->

HTML.Range "{0}" "{1}" "{2}" "{3}" {"class"
"rangeNo";};

?>
};

?>

<html>
<head>
<title>Test Slider</title>
<?
AddJSPlaceholder;
AddCSSPlaceholder;
?>
</head>
<body>
<?
<!-- Create two sliders -->
Component.Create "Slider" "s1" "0" "0" "100";
Write "
";
Component.Create "Slider" "s2" "50" "0" "255";
<!-- Prove it's only the slider that has the
before and after min and max labels -->
Write "
";
HTML.Range "other" "128" "0" "255";
?>
</body>
</html>

As always, the component parts are shown in yellow,
while the test form sits below this. Note that just to show
that it is only the components I have created that have the
minimum and maximum showing, I have also added a third
range slider to the test form, and this time you will see that
it doesn't have the values listed.

Components mean that if I have a specific section of
HTML I find useful, I can turn it into a component and
reuse it again and again! It also means that I can have a
whole set of components available to people programming
in Vortex, that utilise JavaScript or complex code, and
people can just use them directly in their own programs
without having to understand how the entire control
works. This has been the basis of programming for years -
we all stand on the shoulders of giants.

Calling Functions from Variables

G iven the following code, and the 10 rules that we
have talked about for Vortex, what do you think the
output will be on the screen?

<?
Clear;
Function "Alpha"
{
Write "Hello World!";
};
Var "A" "Alpha";
A;
?>

You may realise that a variable isn't a command, but one
of the rules of Vortex is that every statement has to begin
with a command. Therefore, Vortex looks to see if there is a
function called "A" to run. There isn't. Next, it looks to see if
the "A" refers to a variable. If it does, it looks at the value of
that variable. If that is a function, then it runs it!

Hello World!

This means that variables can call functions, which
makes for some interesting opportunities for writing
programs with! How can I use this power? How about to
make a simple text adventure!

The Vortex Adventure Game

I t could be worse - it could be another example around
how to make a cup of tea....!

So far, all of our scripts have been to perform a single
purpose then output the information into a browser. For
this project, we are going to make an interactive program.
This involves a new concept - the form and post-back.

We can create some controls in our code that when you
press a "submit" button it sends that data back to the server
for you to perform a task with. We are going to use a simple
form that posts back to the same script again on the server,

a script I am calling "textadventure" because I'm incredibly
creative.

The problem is that when you post the script back, the
program runs the script again. If at the start of the script
you tell the program to set the variable location to Room 1,
then when it posts back again, it will reset the location back
to one.

Vortex has a special code for this - FormPostBack.

You wrap code that you only want to happen when the
form posts back in curly brackets, and you can use "Else" to
include a section of code that only runs on startup and
when the server has not posted back.

 We are going to create a classic style text adventure game,
and like before we are going to build it up step by step. First
of all though, I need a design for my game. Let's start with
just 5 rooms:

We have 5 rooms and you will start in Room 1. There are
both one way and two way doors in my little diagram. For
example, in the image above, you can travel North into
room 2 from room 1, and you can travel East into room 3
from room 1, but cannot travel back west from room 3 back
into room 1.

We are going to start with functions called "North"
"South" "East" and "West", so we can call these as
commands in our game. These will use switch functions to
determine which room you are in, and therefore what to
do. If you can't move in that direction, you will be told you
cannot move in that direction.

North
 From Room 1 to Room 2
South
 From Room 2 to Room 1
 From Room 5 to Room 4
East
 From Room 1 to Room 3
 From Room 2 to Room 4
 From Room 3 to Room 5
 If Room 4, "There is a portal to the east but a force

field stops you from approaching
West
 From Room 4 to Room 2
 From Room 5 to Room 3
 If Room 3, "The door to the west appears locked and

without a door handle"

Let's make this into code, putting everything into the "not

postback" section:

<?

FormPostBack
{}
Else
{
<!-- Let us set our initial location -->
Var "Loc" "Room1";

<!--
North

From Room 1 to Room 2
-->
Function "North"
{

Switch Loc
"Room1"
{

Var "Loc" "Room2";
}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
South

From Room 2 to Room 1
From Room 5 to Room 4

-->
Function "South"
{

Switch Loc
"Room2"
{

Var "Loc" "Room1";
}
"Room5"
{

Var "Loc" "Room4";
}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
East

From Room 1 to Room 3
From Room 2 to Room 4
From Room 3 to Room 5
If Room 4, "There is a portal to the east

but a force field stops you from approaching
-->
Function "East"
{

Switch Loc
"Room1"
{

Var "Loc" "Room3";
}
"Room2"
{

Var "Loc" "Room4";
}
"Room3"
{

Var "Loc" "Room5";
}
"Room4"

{
WriteLn "You can see a portal to

the East, but a force-field stops you from
approaching it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
West

From Room 4 to Room 2
From Room 5 to Room 3
If Room 3, "The door to the west appears

locked and without a door handle"
 -->

Function "West"
{

Switch Loc
"Room4"
{

Var "Loc" "Room2";
}
"Room5"
{

Var "Loc" "Room3";
}
"Room3"
{

WriteLn "The door to the West
appears closed and without a door handle to use to
open it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};
WriteLn "Hello, and Welcome to the adventure!";
<!-- End of setup code -->
};
?>

So we have our movement directions, but how can we
actually type our command and view the output? We need
to add in the HTML form to our page to have a way of
interacting with the code. At the end of this same script, we
are going to add the following:-

<html>
<head>
<title>Text Adventure</title>
</head>
<body>
<?

HTML.CreateForm "Form" "Standard" "?
Content=TextAdventure" "Go"

{
HTML.Text "Command";

};
?>
</body>
</html>

This creates a standard HTML form that will post back to
the same script we are on (TextAdventure) and has a
submit button marked "Go". Inside this form is a text box
that has the identifier "Command". This means that when
the form posts back, whatever you have typed in the text
box will be stored in a variable called "Command". We can
see this if we add a line into the post back code :-

FormPostBack
{
WriteLn [Combine "You typed " Command "!"];
}

You will see when you click "Go" that it appears above the
text box!

So we now know our post back is working. What we want
to do now is describe the room we are in. Let's create a new
function:-

Function "Room1"
{
WriteLn "To the North you can see an open archway.
To the east is a metal dot that looks quite
sturdy. ";
};

Then we can call this function just by using the Loc
variable as a command!

<html>
<head>
<title>Text Adventure</title>
</head>
<body>
<?
Loc;

HTML.CreateForm "Form" "Standard" "?
Content=TextAdventure" "Go"

{

HTML.Text "Command";
};

?>
</body>
</html>

This one line of code means that when you change
location, it will automatically load the text for whichever
room you are in! Let's create our other rooms:-

Function "Room2"
{
WriteLn "This is Room 2";
};

Function "Room3"
{
WriteLn "This is Room 3";
};

Function "Room4"
{
WriteLn "This is Room 4";
};

Function "Room5"
{
WriteLn "This is Room 5";
};

Obviously, it's very basic! Now I can change the code in
FormPostBack so it just runs the Command variable!

FormPostBack
{
Command;
}

Try going between the different rooms using North, East,
South and West!

To make it clearer, the whole code so far looks as
follows:-

<?
FormPostBack
{
Command;
}
Else
{
Function "Room1"
{
WriteLn "To the North you can see an open archway.
To the east is a metal dot that looks quite
sturdy. ";
};

Function "Room2"
{
WriteLn "This is Room 2";
};

Function "Room3"
{
WriteLn "This is Room 3";
};

Function "Room4"
{
WriteLn "This is Room 4";
};

Function "Room5"
{
WriteLn "This is Room 5";
};

<!-- Let us set our initial location -->
Var "Loc" "Room1";

<!--
North

From Room 1 to Room 2
-->
Function "North"
{

Switch Loc
"Room1"
{

Var "Loc" "Room2";
}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
South

From Room 2 to Room 1
From Room 5 to Room 4

-->
Function "South"
{

Switch Loc
"Room2"
{

Var "Loc" "Room1";
}
"Room5"
{

Var "Loc" "Room4";
}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
East

From Room 1 to Room 3
From Room 2 to Room 4
From Room 3 to Room 5
If Room 4, "There is a portal to the east

but a force field stops you from approaching
-->
Function "East"
{

Switch Loc
"Room1"
{

Var "Loc" "Room3";
}
"Room2"
{

Var "Loc" "Room4";
}
"Room3"
{

Var "Loc" "Room5";
}
"Room4"
{

WriteLn "You can see a portal to
the East, but a force-field stops you from
approaching it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
West

From Room 4 to Room 2
From Room 5 to Room 3
If Room 3, "The door to the west appears

locked and without a door handle"
 -->

Function "West"
{

Switch Loc
"Room4"
{

Var "Loc" "Room2";
}
"Room5"
{

Var "Loc" "Room3";
}
"Room3"
{

WriteLn "The door to the West
appears closed and without a door handle to use to
open it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};
WriteLn "Hello, and Welcome to the adventure!";
WriteLn "You awake to find yourself in a room.
sparsely furnished, just a mattress on the floor
that you are currently sitting on.";
};
?>

<html>
<head>
<title>Text Adventure</title>

</head>
<body>
<?
Loc;

HTML.CreateForm "Form" "Standard" "?
Content=TextAdventure" "Go"

{
HTML.Text "Command";

};

?>
</body>
</html>

You may remember from the previous section that
Functions can have input parameters, that you pass using
brackets. Therefore if you had a function called "Use" and
wanted the user to request what to use (Like "Use Key") You
may think that you have to get the user to write it as they
would in the script -

Use ("Key")

And although that would work, actually due to the inbuilt
security of the Vortex system, it will actually allow:-

Use Key

And convert it correctly for you. Let's do an example,
and add a chest into the second room. Inside will be a
drum which you can take.

Function "Open" (Object)
{
If (Loc == "Room2")
{

If (Object == "chest")
{

WriteLn "The Chest Opens, and inside
there is a drum."

}
(Object == "Chest")
{

WriteLn "The Chest Opens, and inside
there is a drum."

}
(Object == "CHEST")
{

WriteLn "The Chest Opens, and inside
there is a drum."

}
Else
{

WriteLn [Combine "You cannot open a "
Object " here."]

};
}

Else
{

WriteLn [Combine "You cannot open a "
Object " here."]

}
};

Now, this if statement needs to look at two different
things, so I have an if statement to look at the room I am in,
then inside this I have to look to see if they have typed in
the name of a suitable object. However, text is case
sensitive in Vortex, so I am having to test three different
variants of "Chest" - initial capitalisation, all lower case and
all upper case, so hopefully that is what the user will type.
Sounds a bit complicated! Let's make it easier and simpler
to understand!

Function "Open" (Object)
{
If (Loc == "Room2" And [Lower Object] == "chest")
{

WriteLn "The Chest Opens, and inside
there is a drum."
}

Else
{

WriteLn [Combine "You cannot open a "
Object " here."]

};
};

This is so much easier! You can use Logic of "And" or
"Or" between multiple items that you want to check
together. There are also two commands we can use with
text - Upper and Lower, which can convert all the writing
to uppercase or lowercase, making it easier to test text!

If you find the idea of using FormPostBack backwards,
and would rather it be what you need to do first time at the
top, then what to do if it posts back underneath, there is a
command for you! It is FirstTime, and does exactly the

same as FormPostBack but has the top part with what to
run first, then what to do on a post back after that:

FirstTime
{

WriteLn "Hello, and Welcome to the
adventure!";

WriteLn "You awake to find yourself in a
room. sparsely furnished, just a mattress on the
floor that you are currently sitting on.";
}
Else
{

Command;
};  

Post-backs and AJAX and Files, Oh My!

O ur first interactive script performs what is known as
a Post-back - the entire form is sent back to the
server, processed, then the whole page is returned

to the browser with the changes made. Sometimes you only
want to update a small part of the page, not the entire
thing. There is a technique we can use to do this called
AJAX - Asynchronous JavaScript and XML. You don't need
to know anything about JavaScript to do this though, as it's
already set up for you in a JS Part!

There are two ways we can interact with a server from
our browser - GET and POST. Get is used primarily to get
information from the server, while POST is used to send
lots of information to the server - when you complete
typing in a form, for example. In a GET interaction, all the

data we send through has to be part of the URL that we are
sending - you may have seen this sort of data when you
click in your address bar and see a "?" And load of
intelligible data after the main website address. A security
problem with this is that even if your server is running
securely with https, this url is still public and visible so isn’t
secure.

A POST on the other hand has the data stored in a
separate “payload” and is encrypted by the https
certificate. You aren’t as limited with the amount of data
you can send (you can even upload files) but it isn’t quite as
fast as a GET command, even if the data is exactly the
same. Vortex is set up with both GET and POST Ajax
commands in its JSPart “Ajax”, so you can use whichever is
best for the circumstances you are dealing with.

Using Ajax is quite simple - you need to specify what to
post back, which script on the server to post back to, and
where you want the information that comes back to the
server to be shown on the screen.

This is a screenshot from FROTZ, a text adventure engine
for iOS - how about we do another example of our Text
Adventure game, but this time instead of refreshing the
screen constantly, it is more like a classic game, where the
entire text that makes up the game appears on the screen
with each new click of a command? Can we even have the
text in a box above the input bar? Of course we can!

First of all, I'm going to set up an HTML page that uses css
to have a panel fixed to the bottom of the page. I'll use
colours so it just identifies where everything is.

<html>
<head>
</head>
<body>
<??>
<div id="Input" style="position:fixed; bottom:0px;
height: 100px; background-color:orange;width:100%;
left:0px;"></div>
</body>
</html>

Next, in the main part of the page, I am going to add a
panel the same size to the end of the document, so that we
don't lose the bottom of the text underneath the panel
when the text takes up more of the screen than fits and has
to scroll.

<html>
<head>
</head>
<body>
<div style="height: 100px; background-
color:red;width:100%;"></div>
<??>

<div id="Input" style="position:fixed; bottom:0px;
height: 100px; background-color:orange;width:100%;
left:0px;"></div>
</body>
</html>

We need to create the div that will store the output and
give it an identifier so we can talk about it in our code. We
will imaginatively call it "Output". We also need to create
our HTML Form, but this time with a link rather than a
submit button.

<html>
<head>
 </head>
 <body>
 <div id="Output"></div>
 <div style="height: 100px; background-
color:red;width:100%;"></div>

<div id="Input" style="position:fixed; bottom:0px;
height: 100px; background-color:orange;width:100%;
left:0px;">
<?
HTML.CreateForm "Text1" "Standard" "?
Content=Examples/08-PostBackAjax"
{
HTML.Text "TextCommand";
};
?>
 Go
 </div>
 </body>
 </html>

We have our main structure, so now I'm going to add in
all the code from the adventure game in too, however we
are not going to put it into a single script file. You may have

heard of programmers talk about "patterns" when
programming - all that means is they follow a certain
prescription when putting together their programs. Up
until now, we have written all our programs as a single
script, but in this application we are going to separate out
different parts of the code into separate scripts.

Wherever you have saved your current script for your
engine install will be where you have set your settings for
where to run scripts from, I presume! You can use this as
the relative path for other files, and sub directories of this
can also be referenced. This current script I'm going to call
"AdventureGameSetup.vtx", and I'm going to create a new
script file "GameData.vtx" which I will store all of my game
code in:

<?

<!-- Let us set our initial location -->
Var "Loc" "Room1";

Function "Room1"
{
WriteLn "To the North you can see an open archway.
To the east is a metal dot that looks quite
sturdy. ";
};

Function "Room2"
{
WriteLn "This is Room 2. In the corner there is a
chest.";
};

Function "Open" (Object)
{
If (Loc == "Room2" And [Lower Object] == "chest")

{
WriteLn "The Chest Opens, and inside

there is a drum."
}

Else
{

WriteLn [Combine "You cannot open a "
Object " here."]

};
};

Function "Room3"
{
WriteLn "This is Room 3";
};

Function "Room4"
{
WriteLn "This is Room 4";
};

Function "Room5"
{
WriteLn "This is Room 5";
};

<!--
North

From Room 1 to Room 2
-->
Function "North"
{

Switch Loc
"Room1"
{

Var "Loc" "Room2";
}
"DefaultSwitch"

{
WriteLn "You cannot move that

way";
};

};

<!--
South

From Room 2 to Room 1
From Room 5 to Room 4

-->
Function "South"
{

Switch Loc
"Room2"
{

Var "Loc" "Room1";
}
"Room5"
{

Var "Loc" "Room4";
}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
East

From Room 1 to Room 3
From Room 2 to Room 4
From Room 3 to Room 5
If Room 4, "There is a portal to the east

but a force field stops you from approaching
-->
Function "East"
{

Switch Loc
"Room1"
{

Var "Loc" "Room3";
}
"Room2"
{

Var "Loc" "Room4";
}
"Room3"
{

Var "Loc" "Room5";
}
"Room4"
{

WriteLn "You can see a portal to
the East, but a force-field stops you from
approaching it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!--
West

From Room 4 to Room 2
From Room 5 to Room 3
If Room 3, "The door to the west appears

locked and without a door handle"
 -->

Function "West"
{

Switch Loc
"Room4"
{

Var "Loc" "Room2";
}

"Room5"
{

Var "Loc" "Room3";
}
"Room3"
{

WriteLn "The door to the West
appears closed and without a door handle to use to
open it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};
WriteLn "Hello, and Welcome to the adventure!";
WriteLn "You awake to find yourself in a room.
sparsely furnished, just a mattress on the floor
that you are currently sitting on.";
};
?>

So, how do we run this script file in our form-builder
script? Well, between the opening and closing tags of our
"Output" div box, which is where we want it to run, we add:

<?
RunScriptFile "GameData.vtx";
?>

At the moment though, we can't interact with it - we need
to add in our JavaScript. "But", you say, "I'm learning
Vortex! Do I have to learn JavaScript as well?" The good
news is no, not for general Vortex programs, as Vortex
includes special "JSPart" files you can use in your code
without needing to know how they work. In between the
"head" tags, you just need to add:

<script type="text/javascript">
<?
AddJSPart "Ajax";
?>
 </script>

This gives us access to a function called
AjaxPost(FormID, keepOriginal, outerHtml,
scrollDown). FormID is the identifier of the form to send.
KeepOriginal means "do you want the response to keep
what's in the response container and just add it to the
bottom (true) or overwrite the data with the response
(false)?" OuterHtml asks whether the response should
replace the response container completely (true) or just
inside the container (false). If after the information comes
back you want the page to scroll down, eg to show the new
information that has come back, set scrollDown to true.

KeepOriginal, OuterHtml and ScrollDown are all what are
known as optional parameters - you don't actually need to
include them in your code. If you don't, they will revert to
their default values - all false. This can make it quick and
easy to use!

How do we tell the code which object to use for our
response? Well, we are going to add a hidden value to our
form:

HTML.Hidden "ResponseObject" "Output";

What does this mean? We can tell our server to do an
Ajax post back and put the result that comes back from the
server in "Output", adding to whatever is already in the
output. How will it know which script to run against
though? For this we need to tell it in another hidden field.

We are going to have a "controller" script called
GameControl.vtx, so we are going to tell our Ajax to use
that script :

HTML.Hidden "ItemContent" "GameControl";

So that when we post back the script triggers the
"postback" code, we also need to tell it that the source of
this message is the same script:-

HTML.Hidden "Source" "GameControl";

This means our HTML Form now looks like:
<?
HTML.CreateForm "Text1" "Standard" ""
{
HTML.Hidden "ItemContent" "GameControl";
HTML.Hidden "Source" "GameControl";
HTML.Hidden "ResponseObject" "Output";
HTML.Text "TextCommand";
};
?>

Finally, we need to have our "control" code, which will be
where we launch the entire program from. It's actually
quite simple:-

<?
FormPostBack
{

TextCommand;
Loc;

}
Else
{

RunScriptFile "AdventureGameSetup.vtx";
};

?>

Now it all works, but it doesn't look very pretty! I am
going to improve these scripts. The full code for all three
scripts is shown below, with the following additions made:-

• Really important - Added lots of comments!
Otherwise you just won't remember which is the "entry
point" script and how it all works!
• Do some pre-processing in FormPostBack so the user
can be lazy - e.g just type "N", "S", "E" or "W" rather than
the full compass direction but still be directed to the
correct function.
• Pretty-up the interface - we don't want a giant red and
orange box on the screen, and perhaps a better and
larger font?

GameControl

<!-- This is the entry point to the Text Adventure
Program -->

<?
<!-- When we post back to the server, run
whichever command the user has typed, then write
to screen the description of the current room
using the variables TextCommand and Loc -->
FormPostBack
{

WriteLn [Combine "<b style=\"background-
color: yellow;\">" TextCommand ""];

WriteLn "";
Switch [Lower TextCommand]
"n"
{

North;
}

"s"
{

South;
}
"e"
{

East;
}
"w"
{

West;
}
"DefaultSwitch"
{

TextCommand;
};
Loc;

}
Else
{

<!-- If this is a first load, setup the form
on screen -->

RunScriptFile "Examples/08b-
PostBackAjaxForm.vtx";
};
?>

AdventureGameSetup

<!-- This sets up the form for the Text Adventure
Program - run the 08-PostBackAjax.vtx script to
run the program -->
<html>
<head>
<title>A Room With a View</title>
 <script type="text/javascript">
<?
AddJSPart "Ajax2";
?>

 </script>
 </head>
 <body style="background-color:cream;font-
size:14pt;font-family:Arial;">
 <div id="Output">
<?
RunScriptFile "Examples/08c-GameData.vtx";
?>
 </div>
 <div style="height: 100px; background-
color:cream;width:100%;"></div>

<div id="Input" style="position:fixed; bottom:0px;
height: 50px; padding-bottom:50px; background-
color:cream;width:100%; left:0px;">
<?
HTML.CreateForm "Text1" "Standard" "?
Content=Examples/08-PostBackAjax"
{
HTML.Hidden "ItemContent" "Examples/08-
PostBackAjax";
HTML.Hidden "Source" "Examples/08-PostBackAjax";
HTML.Hidden "ResponseObject" "Output";

HTML.Text "TextCommand" {"style" "width:50%"
"margin-left:25%" "margin-right:20px" "font-
family:Arial" "font-size:14pt"};
Write "<a onclick=\"AjaxPost('Text1', true, false,
true);\">Go";
};
?>

 </div>
 </body>
 </html>

GameData

<!-- This sets up the game data for the Text
Adventure Program - run the 08-PostBackAjax.vtx
script to run the program -->
<?

<!-- Let us set our initial location -->
Var "Loc" "Room1";

Function "ListCommands"
{

WriteLn "The commands that you can use are
as follows:-";

WriteLn "Compass Directions (North, South,
East, West)";

WriteLn "Open (item)";
WriteLn "Take (item)";
WriteLn "Use (item) with (item)";
WriteLn "Examine (item)";
WriteLn "Drop (item)";
WriteLn "Inventory";

};

Function "Open" (Object)
{

If (Loc == "Room2" And [Lower Object] ==
"chest")

{
WriteLn "The Chest Opens, and inside

there is a drum."
}
Else
{

WriteLn [Combine "You cannot open a "
Object " here."]

};
};

Function "Take" (Object)
{

WriteLn "Not yet coded - sorry!";
};

Function "Use" (Object With Object2)
{

WriteLn "Not yet coded - sorry!";
};

Function "Examine" (Object)
{

WriteLn "Not yet coded - sorry!";
};

Function "Drop" (Object)
{

WriteLn "Not yet coded - sorry!";
};

Function "Inventory"
{

WriteLn "Not yet coded - sorry!";
};

Function "Room1"
{

WriteLn "
You are standing in the middle
of the room you woke up in. There is a bed in the
corner, with the sheet that was covering you
dragging to the floor.";

WriteLn "
To the North you can see an
open archway. To the East is a metal door that
looks quite sturdy. ";
};

Function "Room2"
{

WriteLn "This is Room 2. In the corner there
is a chest.";
};

Function "Room3"

{
WriteLn "This is Room 3";

};

Function "Room4"
{

WriteLn "This is Room 4";
};

Function "Room5"
{

WriteLn "This is Room 5";
};

<!-- North From Room 1 to Room 2 -->
Function "North"
{

Switch Loc
"Room1"
{

Var "Loc" "Room2";
}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!-- South From Room 2 to Room 1; From Room 5 to
Room 4 -->
Function "South"
{

Switch Loc
"Room2"
{

Var "Loc" "Room1";
}
"Room5"
{

Var "Loc" "Room4";
}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!-- East From Room 1 to Room 3; From Room 2 to
Room 4; From Room 3 to Room 5; If Room 4,
"There is a portal to the east but a force field
stops you from approaching -->
Function "East"
{

Switch Loc
"Room1"
{

Var "Loc" "Room3";
}
"Room2"
{

Var "Loc" "Room4";
}
"Room3"
{

Var "Loc" "Room5";
}
"Room4"
{

WriteLn "You can see a portal to
the East, but a force-field stops you from
approaching it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!-- West From Room 4 to Room 2; From Room 5 to
Room 3; If Room 3, "The door to the west appears
locked and without a door handle" -->
Function "West"
{

Switch Loc
"Room4"
{

Var "Loc" "Room2";
}
"Room5"
{

Var "Loc" "Room3";
}
"Room3"
{

WriteLn "The door to the West
appears closed and without a door handle to use to
open it.";

}
"DefaultSwitch"
{

WriteLn "You cannot move that
way";

};
};

<!-- Let's create an introduction to our
interactive story -->

Write "<h2>A Room With a View</h2><h3>Interactive
Fiction by Chris Lewis</h3>";

WriteLn "You awaken on a bare mattress on a single
bed frame, with a sheet pulled over you. You can
still almost smell some form of chemical. Pungent,
yet almost just a memory.";

WriteLn "
Your last memory is of parking your
car in a car park. You were planning on going to -
where was it? The cinema? Then.... then.... a
hand! A hand over your mouth! You could smell the
chemical on the cloth being pressed against your
face as you slipped into unconsciousness...";

WriteLn "
So, where are you? What has
happened? How do you escape? You stand up and look
around yourself.";

<!-- Display the description of the current room
-->

Loc;

<!-- And finally some help and guidance as to
where to start! -->

WriteLn "
(Type \"ListCommands to see what you
are able to do\")";
?>

Making Websites Cleaner

V ortex may be good for scripting items that need
variables and processing, but it can also be used
just to make website code easier to maintain and

understand. Let's look at a quick example. Let's start with a
basic HTML website framework:-

<html>
 <head>
 <title>
 This is the name on the tab
 </title>
 </head>
 <body>
 This appears on the screen
 </body>
</html>

Now the next stage may be to link a style sheet to the
html file. In standard HTML, you would add the code:

<link rel="stylesheet" type="text/css"
href="file.css" />

But even though I have been developing for the web for
many many (too many) years, I still often have to look up
the right way of writing this. So in Vortex, I've got a simple
command to use instead:

<?
AddStyleSheet "file.css";
?>

And that converts to the HTML code. Adding a JavaScript
file is:

<script type="text/JavaScript" src="script.js"></
script>

Note that this file uses "src" rather than "href" to link to -
one of the reasons people get confused! Well, Vortex has
the answer for that too!

<?
AddJavaScript "script.js";
?>

And boom! The right code is entered! What if you need to
add in multiple style sheets or JavaScript files?

<?
AddStyleSheet "file.css" "file2.css" "file3.css";
?>

Would translate to:

<link rel="stylesheet" type="text/css
href="file.css" />
<link rel="stylesheet" type="text/css
href="file2.css" />
<link rel="stylesheet" type="text/css
href="file3.css" />

Not only does it speed up development, it makes things
much neater to read the code as well! An example for the
code in total would look like:

<html>
 <head>
 <title>
 This is the name on the tab
 </title>
 <?
 AddStyleSheet "file.css" "file2.css"
"file3.css";
 AddJavaScript "script.js";
 ?>
 </head>
 <body>
 This appears on the screen
 </body>
</html>

There is something else that we often put into the header
section of a website now too - Meta tags. Meta tags are
information about information. They give the browser extra
knowledge about the contents of the web page and how to
display it. When you add a link to a website on messages or
other online services, quite often now you see a little

summary of what the link is for. This is produced though a
specific set of meta tags known as open graph.

We can use a single command in Vortex to create the
open graph meta tags:

HTML.OpenGraph "Site Name" "Title" "Description"
"URL" "Image URL" "Alt Tag for Image";

Say I wanted to create my "Tornado Design" website open
graph meta data:-

<? HTML.OpenGraph "Tornado Design" "Tornado
Design" "Educational Software and Services for
Schools and Colleges" "https://
www.tornadodesign.co.uk" "https://
www.tornadodesign.co.uk/style/tLogo.png" "Tornado
Design Logo"; ?>

This produces:-

<meta property="og:site_name" content="History Begins">
<meta property="og:Rtle" content="History Begins">
<meta property="og:descripRon" content="Face the Future">
<meta property="og:url" content="htps://www.historybegins.co.uk">
<meta property="og:image" content="historybegins/style/Logo.png">
<meta property="og:image:alt" content="History Begins Logo">

So in a short while we will look at all of this with a better
real world example. But first, Let's look at how we can
combine css with our Vortex script! I do an automatic
change between light mode and dark mode by changing the
css written to the output document based on what time it is
- if it is between 8am and 7pm, show it light mode,
otherwise show in dark mode. Let's have the HTML in
square boxes, and the code in our code font:-

<style type="text/css">
/* background colours */
body
{

<?
If ([Date.GetDate "HH"] >= 8 And [Date.GetDate
"HH"] <= 19)
{

Write "background-color: white;";
}
Else
{

Write "background-color: black;";
};

?>
}
#sidePanel
{

<?
If ([Date.GetDate "HH"] >= 8 And [Date.GetDate
"HH"] <= 19)
{

Write "background-color: white;";
}
Else
{

Write "background-color: black;";
};

?>
}
/* foreground and border colours */
 body, .HoverLink a, a:visited, a:hover, a, a:visited
{

<?
If ([Date.GetDate "HH"] >= 8 And [Date.GetDate
"HH"] <= 19)
{

Write "color: black;";

}
Else
{

Write "color: white;";
};

?>
}
</style>

It works, it could be useful, but ultimately it isn't very
neat and tidy. However, there is a special command in
Vortex which can add CSS styles into memory and output
them into the document where you put the command
"AddCSSPlaceholder" - This means we can have the exact
same code as above but in a much shorter and cleaner
script :-

<?
AddCSSPlaceholder;
If ([Date.GetDate "HH"] >= 8 And [Date.GetDate
"HH"] <= 19)
{

<!-- background colours -->
AddCSSPartDelayed "body" "background-color:

white;";
AddCSSPartDelayed "#sidePanel" "background-

color:#EEEEEE;";
<!-- foreground and border colours -->
AddCSSPartDelayed "body, .HoverLink a,

a:visited, a:hover, a, a:visited" "color: black;";
}
Else
{

<!-- background colours -->
AddCSSPartDelayed "body" "background-color:

black;";
AddCSSPartDelayed "#sidePanel" "background-

color:#222222;";

<!-- foreground and border colours -->
AddCSSPartDelayed "body, .HoverLink a,

a:visited, a:hover, a, a:visited" "color: white;";
};

?>

Now we know about delayed css, let's look at a proper
and realistic example. I'm going to use my own website as
an example, Tornado Design.

Firstly, let's see the version we are going to look at
improving:

The HTML for this - brace yourself:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 TransiRonal//EN"
"htp://www.w3.org/TR/xhtml1/DTD/xhtml1-transiRonal.dtd">
<html xmlns="htp://www.w3.org/1999/xhtml">

<head>
 <link rel="icon" href="favicon.ico" type="image/x-icon"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-
icon"/>
 <Rtle>Tornado Design</Rtle>

 <meta property="og:Rtle" content="Tornado Design">
 <meta property="og:descripRon" content="EducaRonal
Sofware and Services for Schools and Colleges">
 <meta property="og:url" content="htp://
www.TornadoDesign.co.uk">
 <meta property="og:image" content="htp://
www.TornadoDesign.co.uk/style/tLogo.png">
 <meta property="og:image:alt" content="Tornado Design
Logo">
 <meta property="og:site_name" content="Tornado Design">

 <meta name="viewport" content="width=device-width, iniRal-
scale=1.0">
 <style type="text/css">

 @font-face {
 font-family: "Open Sans Regular";
 src: url("style/OpenSans-Regular-webfont.eot");
 src: url("style/OpenSans-Regular-webfont.eot?#iefix")
format("embedded-opentype"),
 url("style/OpenSans-Regular-webfont.}") format("truetype"),
 url("style/OpenSans-Regular-webfont.woff") format("woff");
 font-weight: normal;
 font-style: normal;
}

/* Light */
@font-face {
 font-family: "Open Sans Light";
 src: url("style/OpenSans-Light-webfont.eot");

 src: url("style/OpenSans-Light-webfont.eot?#iefix")
format("embedded-opentype"),
 url("style/OpenSans-Light-webfont.}") format("truetype"),
 url("style/OpenSans-Light-webfont.woff") format("woff");
 font-weight: normal;
 font-style: normal;
}

body
{
 font-family: "Open Sans Regular", 'HelveRca Neue', HelveRca,
Arial, sans-serif;
font-size: 12pt;
font-style: normal;
 font-variant: normal;
 font-weight: 400;
 line-height: 200%;
padding: 0px;
margin: 0px;
}

.Link
{
 color:White;
 text-decoraRon:none;
}

h1 {
 font-family: "Open Sans Light", 'HelveRca Neue', HelveRca,
Arial, sans-serif;
 font-size: 20pt;
 font-style: normal;
 font-variant: normal;
 font-weight: 400;
/* text-align: center; */
}

.Title {
 font-family: "Open Sans Light", 'HelveRca Neue', HelveRca, Arial, sans-
serif;
 font-size: 20pt;
 font-style: normal;
 font-variant: normal;
 font-weight: 400;
 /* text-align: center; */
}

.Blue
{
background-color:rgb(91,169,221);
color:white;
padding:50px;
padding-top:10px;
}

.Orange
{
background-color:rgb(228, 161, 0);
color:white;
padding:50px;
padding-top:10px;
}

.Green
{
background-color:rgb(117, 163, 117);
color:white;
padding:50px;
padding-top:10px;
}

.Box
{
 height: 480px;

}

.Purple
{
background-color:rgb(204, 204, 255);
color:white;
padding:50px;
padding-top:10px;
}

.White
{
padding:50px;
padding-top:10px;
}

.LefText {
 text-align: lef;
}

#frontBar
{
background-color: black; opacity:0.8; posiRon:fixed; top:0px;
width:100%; Color:white; height:50px;
}

#backBar
{
height:50px;
}

#SubTitle
{
text-align:center; color:white; font-size:40pt; padding-top: 200px;
}

#SubText

{
text-align:lef; color:white; font-size:20pt; padding-lef:100px;padding-
right:100px; padding-top:100px;line-height: 120%;
}

#Logo
{
height:50px;
}

@media screen and (max-width:640px)
{

#frontBar
{
height:80px;
}

#backBar
{
height:80px;
}

#SubTitle
{
font-size:18pt;
padding-top: 50px;
}

#SubText
{
font-size:12pt; padding-lef:10px;padding-right:10px;
padding-top:10px; text-align: jusRfy;
}

#Logo
{

display: none;
}

}

 </style>

</head>
<body>
 <div id="backBar"></div>
 <div style="background-color: Black; height:3px;"></div>
 <div style="background-size: cover; background-image:
url('style/IMG_0066.JPG'); height:800px;">
 <div style="background-color: Black; opacity: 0.5;
height:800px;">
 <div id="SubTitle">Sofware For EducaRon</div>
 <div id="SubText">
 <p style="text-align:center;">We Teach. We
Create. We Learn.
 </p><p>
We are unique. We are not just sofware developers. We are teachers.
We therefore have a unique view of what should be possible when
educaRon and technology combine, and Tornado Design is the result.
Tools to help teach. Tools to help learn. UlRmately, tools for us all to
educate and be educated.</p><p>
 Tornado Design produces educaRonal sofware
and a range of accessibility soluRons to help students at all levels of
their educaRon. Our tools support teachers and lecturers both in and
outside the classroom.
 </p>
 </div>
 </div>
 </div>
 <div style="background-color: Black; height:3px;"></div>
 <div style="background-size: cover; background-image:
url('style/voiceSynthbgnd.png'); height:800px;">

 <div style="background-color: orange; opacity: 0.9;
height:800px;">
 <div id="SubTitle"><a class="Link" href="?
Content=Products">VoiceSynth</div>
 <div id="SubText">
 A simple to use computer reader tool, suitable
for exams and the classroom in Schools, Colleges and UniversiRes.<br/
>
 </div>
 <div style="border: 1px solid black; background-
color:black; color:white; width: 220px; height: 200px; border-radius:5px;
posiRon:relaRve; lef: 50%; margin-lef:-130px; padding:20px;">
 <i>"It's not just for reading - one student re-wrote a
word over and over unRl they could hear they'd spelt it correctly!"</i>
 <div style="text-align:right;">Exam Invigilator</div>
 </div>
 </div>
 </div>
 <div style="background-color: Black; height:3px;"></div>
 <div style="background-size: cover; background-image:
url('style/vAccessbgnd.png'); height:800px;">
 <div style="background-color: rgb(207,222,207); opacity: 0.9;
height:800px;">
 <div id="SubTitle" style="color:black;"><a class="Link"
href="?Content=vCollegeAccessibility" style="color:black;">Colour
Cover</div>
 <div id="SubText" style="color:black;">
 A digital colour filter soluRon for all needs and
requirements, suitable for exams and the classroom in Schools, Colleges
and UniversiRes.

 </div>
 <div style="border: 1px solid black;
background-color:black; color:white; width: 220px; height: 200px;
border-radius:5px; posiRon:relaRve; lef: 50%; margin-lef:-130px;
padding:20px;">

 <i>"My English GCSE students have really found this
helpful when si�ng mock exams. Thank you for a great alternaRve for
those who need it."</i>
 <div style="text-align:right;">GCSE English Teacher</
div>
 </div>
 </div>
 </div>
 <div style="background-color: Black; height:3px;"></div>
 <div style="background-size: cover; background-image:
url('style/smartdoxbgnd.png'); height:800px;">
 <div style="background-color: purple; opacity:0.8;
height:800px;">
 <div id="SubTitle"><a class="Link" href="?
Content=SmartDox">SmartDox</div>
 <div id="SubText">
 Replace your Documents folder with something
smarter! Aids organisaRon and informaRon searches.

 </div>
 <div style="border: 1px solid black; background-
color:black; color:white; width: 220px; height: 200px; border-radius:5px;
posiRon:relaRve; lef: 50%; margin-lef:-130px; padding:20px;">
 <i>"Instant search results and colour coded folders - so
much easier to stay organised!"</i>
 <div style="text-align:right;">Student</div>
 </div>
 </div>
 </div>
 <div style="background-color: Black; height:3px;"></div>
 <div style="background-size: cover; background-image:
url('style/vCollegebgnd.png'); height:800px;">
 <div style="background-color: rgb(60,90,61); opacity: 0.8;
height:800px;">
 <div id="SubTitle"><a class="Link" href="?
Content=Services">vCollege</div>
 <div id="SubText">

 Real EducaRon. Web based VLE and Assignment
Management in one Package.

 </div>
 <div style="border: 1px solid black; background-
color:black; color:white; width: 220px; height: 200px; border-radius:5px;
posiRon:relaRve; lef: 50%; margin-lef:-130px; padding:20px;">
 <i>"Everything I need is all in one place - my
assignments, my feedback, even my notes!"</i><div style="text-
align:right;">Student</div></div>
 </div>
 </div>
 <div style="background-color: Black; height:3px;"></div>
 <div class="White Box" style="height:20px;">
 Copyright 2020> Tornado Design. All Rights Reserved.
 </div>
 <div id="frontBar">
 <img id="Logo" style="float:lef;" src="style/
tornado.png" alt="Logo"/>
 <div style="padding:10px; font-size:10pt; float:lef;">
 <div class="Title" style="float:lef; margin-right:
50px;">Tornado Design</div>
 <div style="float:lef;">
 <a class="Link" href="?
Content=Products">Products
 | <a class="Link" href="?
Content=Services">Services
 | <a class="Link" href="?
Content=Training">Training | <a class="Link" href="?
Content=VR">VR | <a class="Link" href="?
Content=Contact">Contact
 </div>
 </div>
 </div>
</body>
</html>

This website is at a stage I would term "working
prototype" - it looks as I want it to look, but it is far from
optimal - there are a lot of CSS in-line styles on the tags,
which should really need to be in the style at the top, and
currently this is all HTML - no code required. It does load
quickly though! It is the style I am going to look at using for
multiple pages too, so I will be using a lot of this code on
other pages which is an important consideration. This is
currently 265 lines of code. So we are going to start the
optimisation process!

Before putting together any Vortex code into this mix, I
want to firstly look at optimising the CSS. For example:-

<div style="background-color: Black; height:3px;"></div>

Is repeated within the page, so we can change this into:-

.BlackBar
{
background-color: Black; height:3px;
}

<div class="BlackBar"></div>

Making those changes takes our lines of code up to 269,
but looks neater. I shall continue and see what happens...

... 10 minutes later ...

Right! 288 lines of code currently, but easier to read. All
the lines in Red on the code above have been optimised
into CSS styles at the top of the page, to make things clearer

and easier to understand (obviously, at the moment, not
making things smaller!)

I won't fill up the pages of this book (yet) with the new
code, as it would just be a waste of 9 and a bit pages! What I
am going to do is now start the Vortexing of the website!

Let's start where we use the "year" at the bottom of the
screen as part of the copyright. As I am writing this it is
2020 (Yup, THAT year) but that means the website needs
manually updating on all the pages each year, or it will look
out of date. We have a line of code we can do this with in
Vortex, automatically updating each year:

<? Write [Date.Format [Date.GetDate] "yyyy"]; ?>

So we can use that. We can see the open graph meta tags
in the top, and we can replace that with our Vortex code
that specifies those tags easier:

<? HTML.OpenGraph "Tornado Design" "Tornado
Design" "Educational Software and Services for
Schools and Colleges" "https://
www.tornadodesign.co.uk" "https://
www.tornadodesign.co.uk/style/tLogo.png" "Tornado
Design Logo"; ?>

Now I am going to do some work on the CSS on the page
too. There is a command in Vortex that allows us to add
styles to a CSS group, and then when the page has finished
processing adds them in at the point of the document
where you type AddCSSPlaceholder - so you can actually
produce CSS styles throughout your document and have
them all in one place. This command is called

AddCSSPartDelayed, and you say what you want to apply
the styles to, and then the styles to apply. You can add
multiple items to the same style in different commands, or
add multiple styles in a single command. We are going to
do this with our code. For example, "Body" which is:-

body
{
 font-family: "Open Sans Regular", 'HelveRca Neue', HelveRca,
Arial, sans-serif;
font-size: 12pt;
font-style: normal;
 font-variant: normal;
 font-weight: 400;
 line-height: 200%;
padding: 0px;
margin: 0px;
}

Currently Becomes:

AddCSSPartDelayed "body" "font-family: \"Open Sans
Regular\", 'Helvetica Neue', Helvetica, Arial,
sans-serif; font-size: 12pt; font-style: normal;
font-variant: normal; font-weight: 400; line-
height: 200%; padding: 0px; margin: 0px;";

but we are going to make a further change shortly to
make styles easier to manage in the future, again as you will
see later :-)

Once all of the CSS styles have been processed, the next
thing I am going to do is separate out the content in the
main part of the page from the rest of the code - a so-called
template. The main areas that are going to alter between

pages are the title of the page, the content, and finally some
pages may have a sub-menu, so that will be the third thing.
This changes the "default" page to look as follows:

<?
<!-- Get the content that we need for this page
into a variable -->
RunScriptIntoVar "ContentPanel"
"defaultContent.vtx";
<!-- Now grab the template and put in the title
(blank) Content and extra menu items (blank) -->
RunScriptFile "pageTemplate.vtx" "" ContentPanel
"";
<!-- All done! -->
?>

All the rest of the code is in defaultContent or the
pageTemplate! Let's take a look at the defaultContent first,
which is all HTML:

 <div class="gfxPanel" style="background-image: url('style/
IMG_0066.JPG');">
 <div style="background-color: Black; opacity: 0.5;
height:800px;">
 <div id="SubTitle">Sofware For EducaRon</div>
 <div id="SubText">
 <p style="text-align:center;">We Teach. We
Create. We Learn.
 </p><p>
We are unique. We are not just sofware developers. We are teachers.
We therefore have a unique view of what should be possible when
educaRon and technology combine, and Tornado Design is the result.
Tools to help teach. Tools to help learn. UlRmately, tools for us all to
educate and be educated.</p><p>
 Tornado Design produces educaRonal sofware
and a range of accessibility soluRons to help students at all levels of

their educaRon. Our tools support teachers and lecturers both in and
outside the classroom.
 </p>
 </div>
 </div>
 </div>
 <div class="BlackBar"></div>
 <div class="gfxPanel" style="background-image: url('style/
voiceSynthbgnd.png');">
 <div style="background-color: orange; opacity: 0.9;
height:800px;">
 <div id="SubTitle"><a class="Link" href="?
Content=Products">VoiceSynth</div>
 <div id="SubText">
 A simple to use computer reader tool, suitable
for exams and the classroom in Schools, Colleges and UniversiRes.<br/
>
 </div>
 <div class="txtPanel">
 <i>"It's not just for reading - one student re-wrote a
word over and over unRl they could hear they'd spelt it correctly!"</i>
 <div style="text-align:right;">Exam Invigilator</div>
 </div>
 </div>
 </div>
 <div class="BlackBar"></div>
 <div class="gfxPanel" style="background-image: url('style/
vAccessbgnd.png');">
 <div style="background-color: rgb(207,222,207); opacity: 0.9;
height:800px;">
 <div id="SubTitle" style="color:black;"><a class="Link"
href="?Content=vCollegeAccessibility" style="color:black;">Colour
Cover</div>
 <div id="SubText" style="color:black;">
 A digital colour filter soluRon for all needs and
requirements, suitable for exams and the classroom in Schools, Colleges
and UniversiRes.

 </div>
 <div class="txtPanel">
 <i>"My English GCSE students have really found this
helpful when si�ng mock exams. Thank you for a great alternaRve for
those who need it."</i>
 <div style="text-align:right;">GCSE English Teacher</
div>
 </div>
 </div>
 </div>
 <div class="BlackBar"></div>
 <div class="gfxPanel" style="background-image: url('style/
smartdoxbgnd.png');">
 <div style="background-color: purple; opacity:0.8;
height:800px;">
 <div id="SubTitle"><a class="Link" href="?
Content=SmartDox">SmartDox</div>
 <div id="SubText">
 Replace your Documents folder with something
smarter! Aids organisaRon and informaRon searches.

 </div>
 <div class="txtPanel">
 <i>"Instant search results and colour coded folders - so
much easier to stay organised!"</i>
 <div style="text-align:right;">Student</div>
 </div>
 </div>
 </div>
 <div class="BlackBar"></div>
 <div class="gfxPanel" style="background-image: url('style/
vCollegebgnd.png');">
 <div style="background-color: rgb(60,90,61); opacity: 0.8;
height:800px;">
 <div id="SubTitle"><a class="Link" href="?
Content=Services">vCollege</div>
 <div id="SubText">

 Real EducaRon. Web based VLE and Assignment
Management in one Package.

 </div>
 <div class="txtPanel">
 <i>"Everything I need is all in one place - my
assignments, my feedback, even my notes!"</i><div style="text-
align:right;">Student</div></div>
 </div>
 </div>
 <??>

Notice it has to have the <??> in the text somewhere
though (It's at the end) - this tells the script system to treat
everything outside the <??> as HTML, otherwise it will be
treated as if it is all a script file and not run correctly!

Now the final page to show you is the template. This is a
combination of HTML and Vortex code, and includes some
other optimisations that come about from my general web-
dev knowledge:-

• The only font types I am going to embed is WOFF /
WOFF 2, so removed TTF and EOF font types.
• I removed unnecessary commented out code
• I merged multiple styles so if something appears in
multiple styles, it is added to a separate CSS group type
listing

Where we want the items to be inserted into our
template we use curly brackets with numbers - {0} {1} {2}
etc! I'm highlighting these in a yellow background.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 TransiRonal//EN"
"htp://www.w3.org/TR/xhtml1/DTD/xhtml1-transiRonal.dtd">
<html xmlns="htp://www.w3.org/1999/xhtml">

<head>
 <link rel="icon" href="favicon.ico" type="image/x-icon"/>
 <link rel="shortcut icon" href="favicon.ico" type="image/x-
icon"/>
 <Rtle>Tornado Design {0}</Rtle>

<? HTML.OpenGraph "Tornado Design" "Tornado Design" "EducaRonal
Sofware and Services for Schools and Colleges" "htps://
www.tornadodesign.co.uk" "htps://www.tornadodesign.co.uk/style/
tLogo.png" "Tornado Design Logo"; ?>

<meta name="viewport" content="width=device-width, iniRal-
scale=1.0">

<?
AddCSSPlaceholder;
?>

<style type="text/css">
@font-face { font-family: "Open Sans Regular"; src: url("style/OpenSans-
Regular-webfont.woff") format("woff"); font-weight: normal; font-style:
normal;
}
@font-face { font-family: "Open Sans Light"; src: url("style/OpenSans-
Light-webfont.woff") format("woff"); font-weight: normal; font-style:
normal; }

@media screen and (max-width:640px)
{
#frontBar { height:80px; }
#backBar { height:80px; }
#SubTitle { font-size:18pt; padding-top: 50px; }
#SubText { font-size:12pt; padding-lef:10px;padding-right:10px;
padding-top:10px; text-align: jusRfy; }
#Logo {display: none;}
}
 </style>

</head>
<body>
 <div id="backBar"></div>
 <div class="BlackBar"></div>
 <div id="mainPanel">
 {1}
 </div>
 <div class="BlackBar"></div>
 <div class="White Box" style="height:20px;">
 Copyright

<? Write [Date.Format [Date.GetDate] "yyyy"]; ?>
Tornado Design. All Rights Reserved.
 </div>
 <div id="frontBar">
 <img id="Logo" style="float:lef;" src="style/
tornado.png" alt="Logo"/>
 <div style="padding:10px; font-size:10pt; float:lef;">
 <div class="Title" style="float:lef; margin-right:
50px;">Tornado Design</div>
 <div style="float:lef;">
 <a class="Link" href="?
Content=Products">Products
 | <a class="Link" href="?
Content=Services">Services
 | <a class="Link" href="?
Content=Training">Training | <a class="Link" href="?
Content=VR">VR | <a class="Link" href="?
Content=Contact">Contact{2}
 </div>
 </div>
 </div>
</body>
</html>

<?
<!-- Styles to go into the CSS at the start -->
AddCSSPartDelayed "body" "font-family: \"Open Sans
Regular\", 'Helvetica Neue', Helvetica, Arial,

sans-serif; font-size: 12pt; font-style: normal;
font-variant: normal; font-weight: 400; line-
height: 200%; padding: 0px; margin: 0px;";
AddCSSPartDelayed ".Link" "color:White; text-
decoration:none;";
AddCSSPartDelayed "h1" "font-family: \"Open Sans
Light\", 'Helvetica Neue', Helvetica, Arial, sans-
serif; font-size: 20pt; font-style: normal; font-
variant: normal; font-weight: 400;";
AddCSSPartDelayed ".Title" "font-family: \"Open
Sans Light\", 'Helvetica Neue', Helvetica, Arial,
sans-serif; font-size: 20pt; font-style: normal;
font-variant: normal; font-weight: 400;";
AddCSSPartDelayed
".Blue, .Orange, .Green, .Purple" "color:white;
padding:50px; padding-top:10px;";
AddCSSPartDelayed ".Blue" "background-
color:rgb(91,169,221);";
AddCSSPartDelayed ".Orange" "background-
color:rgb(228, 161, 0);";
AddCSSPartDelayed ".Green" "background-
color:rgb(117, 163, 117);";
AddCSSPartDelayed ".Purple" "background-
color:rgb(204, 204, 255);";
AddCSSPartDelayed ".White" "padding:50px; padding-
top:10px;";
AddCSSPartDelayed ".Box" "height: 480px;";
AddCSSPartDelayed ".LeftText" "text-align: left;";
AddCSSPartDelayed "#frontBar" "background-color:
black; opacity:0.8; position:fixed; top:0px;
width:100%; Color:white; height:50px;";
AddCSSPartDelayed "#backBar, #Logo"
"height:50px;";
AddCSSPartDelayed "#SubTitle" "text-align:center;
color:white; font-size:40pt; padding-top: 200px;";
AddCSSPartDelayed "#SubText" "text-align:left;
color:white; font-size:20pt; padding-
left:100px;padding-right:100px; padding-
top:100px;line-height: 120%;";
AddCSSPartDelayed ".BlackBar" "background-color:
Black; height:3px;";

AddCSSPartDelayed ".gfxPanel" "background-size:
cover; height:800px;";
AddCSSPartDelayed ".txtPanel" "border: 1px solid
black; background-color:black; color:white; width:
220px; height: 200px; border-radius:5px;
position:relative; left: 50%; margin-left:-130px;
padding:20px;";
?>

So, now, what are we going to do with the delayed css?
Well, we are going to divide it up into different sections - for
example fonts, background colours, foreground colours
etc. Again, this is to make it easier to manage in the future if
we need to make any changes. So why use this rather than
just have the CSS in this format:

body
{
font-family: "Open Sans Regular", 'HelveRca Neue', HelveRca, Arial,
sans-serif;
font-size: 12pt;
font-style: normal;
font-variant: normal;
font-weight: 400;
line-height: 200%;
}

body
{
padding: 0px;
}

body
{
margin: 0px;
}

So we have the separated sections and can manage them
as we are with the CSS Part Delayed? Well, something I
have wondered for awhile is whether breaking things up in
this way is slower for the browser to process than having
them in a single container. I put a question out on Twitter,
and one of the first students I ever taught answered, better
than I could imagine! Not only did he find out that yes,
indeed, this is slower than having them all in one section,
but he wrote an application that allowed me to test it to see
just how much slower it was too! His name is James Stanley,
and you can read more about it in the "Thanks" section!

Because it is (very slightly) slower, I want the page to
render with all of the items in the same container together,
and CSS Part delayed does this automatically. Let's do the
separating out and see it all in action:-

<!-- Styles to go into the CSS at the start -->

<!-- Background Colours -->
AddCSSPartDelayed ".Blue" "background-
color:rgb(91,169,221);";
AddCSSPartDelayed ".Orange" "background-
color:rgb(228, 161, 0);";
AddCSSPartDelayed ".Green" "background-
color:rgb(117, 163, 117);";
AddCSSPartDelayed ".Purple" "background-
color:rgb(204, 204, 255);";
AddCSSPartDelayed "#frontBar" "background-color:
black; opacity:0.8;";
AddCSSPartDelayed ".BlackBar" "background-color:
Black;";
AddCSSPartDelayed ".gfxPanel" "background-size:
cover;";
AddCSSPartDelayed ".txtPanel" "background-
color:black;";

<!-- Foreground Colours -->
AddCSSPartDelayed ".Link" "color:White;";
AddCSSPartDelayed
".Blue, .Orange, .Green, .Purple" "color:white;";
AddCSSPartDelayed "#frontBar" "Color:white;";
AddCSSPartDelayed "#SubText" "color:white;";
AddCSSPartDelayed ".txtPanel" "color:white;";

<!-- Font Details -->
AddCSSPartDelayed "body" "font-family: \"Open Sans
Regular\", 'Helvetica Neue', Helvetica, Arial,
sans-serif; font-size: 12pt; font-style: normal;
font-variant: normal; font-weight: 400; line-
height: 200%;";
AddCSSPartDelayed ".Link" "text-decoration:none;";
AddCSSPartDelayed "h1" "font-family: \"Open Sans
Light\", 'Helvetica Neue', Helvetica, Arial, sans-
serif; font-size: 20pt; font-style: normal; font-
variant: normal; font-weight: 400;";
AddCSSPartDelayed ".Title" "font-family: \"Open
Sans Light\", 'Helvetica Neue', Helvetica, Arial,
sans-serif; font-size: 20pt; font-style: normal;
font-variant: normal; font-weight: 400;";
AddCSSPartDelayed ".LeftText" "text-align: left;";
AddCSSPartDelayed "#SubTitle" "text-align:center;
font-size:40pt;";
AddCSSPartDelayed "#SubText" "text-align:left;
font-size:20pt; line-height: 120%;";

<!-- Border Details -->
AddCSSPartDelayed ".txtPanel" "border: 1px solid
black; border-radius:5px;";

<!-- Padding -->
AddCSSPartDelayed "body" "padding: 0px;";
AddCSSPartDelayed
".Blue, .Orange, .Green, .Purple" "padding:50px;
padding-top:10px;";
AddCSSPartDelayed ".White" "padding:50px; padding-
top:10px;";

AddCSSPartDelayed "#SubTitle" "padding-top:
200px;";
AddCSSPartDelayed "#SubText" "padding-
left:100px;padding-right:100px; padding-
top:100px;";
AddCSSPartDelayed ".txtPanel" "padding:20px;";

<!-- Margin -->
AddCSSPartDelayed "body" "margin: 0px;";
AddCSSPartDelayed ".txtPanel" "margin-
left:-130px;";

<!-- Location and Sizing -->
AddCSSPartDelayed ".Box" "height: 480px;";
AddCSSPartDelayed "#frontBar" "position:fixed;
top:0px; width:100%; height:50px;";
AddCSSPartDelayed "#backBar, #Logo"
"height:50px;";
AddCSSPartDelayed ".BlackBar" "height:3px;";
AddCSSPartDelayed ".gfxPanel" "height:800px;";
AddCSSPartDelayed ".txtPanel" "width: 220px;
height: 200px; position:relative; left: 50%;";

While this is much longer, sometimes things need to be
more efficient for the programmer and not the program
when looking at the raw code - as I said, this will all be
turned into more efficient CSS anyway.

We are going to look at another of the pages and how
Vortex can help - the Contact Us page.

This, if we just look at it as an HTML form content page, is
as follows:

<div style="border: 1px black solid; border-radius:5px; margin: 20px;
text-align:center; padding-lef:20px;padding-right:20px;">
<h2>Contact Us</h2>
<p style="text-align:lef;">QuesRons? Queries? Problems? Get in Touch!
</p>

<form method="post" acRon="./?Content=ContactEmailForm"
id="formEmail">
 <table>
 <tbody>
 <tr>
 <td style="text-align:lef;">
 Your Name:
 </td>
 </tr>
 <tr>
 <td>
 <input type="text"
style="width:100%;" name="EmailName" id="EmailName" value="">

 </td>
 </tr>
 <tr>
 <td style="text-align:lef;">
 Your Email Address:

 </td>
 </tr>
 <tr>
 <td>
 <input type="text"
style="width:100%;" name="EmailAddress" id="EmailAddress"
value="">
 </td>
 </tr>
 <tr>
 <td style="text-align:lef;">
 Subject:

 </td>
 </tr>
 <tr>
 <td>
 <input type="text"
style="width:100%;" name="EmailSubject" id="EmailSubject" value="">
 </td>
 </tr>
 <tr>
 <td style="text-align:lef;">
 Your Message:

 </td>
 </tr>
 <tr>
 <td>
 <textarea name="Message"
id="Message" rows="15" cols="35"></textarea>
 </td>
 </tr>
 <tr>

 <td>
 <input type="submit"
class="Buton" value="Send Message">
 </td>
 </tr>
 </tbody>
 </table>
</form>
</div>
<div style="clear:both;"> </div>

Part of this was because I was originally going to use a
table and have the labels next to the inputs, but I chopped
and changed the style around a bit and ended up with it.
The form posted back to the following Vortex code to send
it through as an email back to me, with the variables set by
the HTML form that was posted back (highlighted in red
text):-

<?
Mail.Clear;
Mail.SetFrom EmailAddress EmailName;
Mail.SetTo "MY EMAIL ADDRESS.co.uk" "Chris Lewis";
Mail.Subject [Combine "FROM TORNADO DESIGN :- "
EmailSubject];
Mail.Message Message False;
Mail.Send;
WriteLn "Thank you, your message has been Sent.
Please allow 3 working days for a reply.";
?>

As hopefully you can see, sending emails from Vortex is
really easy, because all the difficult parts are hidden away!
Instead of having this as two different scripts, it could be
combined into a single one using our FormPostBack and
use the special command for HTML Form:

<?
FormPostBack
{

Mail.Clear;
Mail.SetFrom EmailAddress EmailName;
Mail.SetTo "MY EMAIL .co.uk" "Chris Lewis";
Mail.Subject [Combine "FROM TORNADO

DESIGN :- " EmailSubject];
Mail.Message Message False;
Mail.Send;
WriteLn "Thank you, your message has been

Sent. Please allow 3 working days for a reply.";
}
Else
{

Write "<div style=\"margin-left:
20px;margin-right: 20px;\">";

Write "<h2>Contact Us</h2>";
Write "<p style=\"text-align:left;

\">Questions? Queries? Problems? Get in Touch!</
p>";

HTML.CreateForm "emailForm" "Standard" "?
Content=examples/09d Email Contact" "Send Message"

{
WriteLn "Your Name:";
HTML.Text "EmailName" {"style"

"width:100%;"};
WriteLn "
Your Email Address:";
HTML.Text "EmailAddress" {"style"

"width:100%;"};
WriteLn "
Subject:";
HTML.Text "EmailSubject" {"style"

"width:100%;"};
WriteLn "
Your Message:";
HTML.TextArea "Message" 15 35 {"style"

"width:100%;"};
WriteLn "";

};
Write "</div>";

};

There is a small issue with this - The form postback
means that you don't get a formatted webpage when it
comes back, just a plain white page with the thank you
message. One solution, which isn't optimal, would be to
reuse the template for the post back:

FormPostBack
{

Mail.Clear;
Mail.SetFrom EmailAddress EmailName;
Mail.SetTo "MY EMAIL .co.uk" "Chris Lewis";
Mail.Subject [Combine "FROM TORNADO

DESIGN :- " EmailSubject];
Mail.Message Message False;
Mail.Send;

<!-- Get the content that we need for this page
into a variable -->
Var "ContentPanel" "Thank you, your message has
been Sent. Please allow 3 working days for a
reply.";
<!-- Now grab the template and put in the title
(blank) Content and extra menu items (blank) -->
RunScriptFile "pageTemplate.vtx" "" ContentPanel
"";
}

However, we could solve this by using JSParts - Our Ajax
form code, so we can change our form around a bit:-

AddJSPartDelayed "Ajax";
HTML.CreateForm "emailForm" "Standard" "?
Content=examples/09d Email Contact"

{
HTML.Hidden "ResponseObject" "mainPanel";
HTML.Hidden "Message" "Please Wait...";

HTML.Hidden "ItemContent" "examples/09d
Email Contact";

HTML.Hidden "Source" "examples/09d Email
Contact";

WriteLn "Your Name:";
HTML.Text "EmailName" {"style"

"width:100%;"};
WriteLn "
Your Email Address:";
HTML.Text "EmailAddress" {"style"

"width:100%;"};
WriteLn "
Subject:";
HTML.Text "EmailSubject" {"style"

"width:100%;"};
WriteLn "
Your Message:";
HTML.TextArea "Message" 15 35 {"style"

"width:100%;"};
WriteLn "
Send Message</
a>";

};

But we are going to need to add into our template where
the yellow is below:-

<?
AddCSSPlaceholder;
AddJSPlaceholder;
?>

And we now have it working correctly! However, we still
aren't finished - why not validate the email too, to check it's
a proper email address? We have another JSPart we can add
called 'Validation' and we can make a slight change to the
onclick on the form:

AddJSPartDelayed "Validation";
WriteLn "
<a
onclick=\"if(ValidateEmail(ele('EmailAddress')))
{AjaxPost('emailForm');}\">Send Message";

Now if the user doesn't enter a valid email address, the
message will not send.

We are going to look at one more thing we can do to
make things faster too - caching of the output. So, what
exactly is caching?

Every time a Vortex script runs, it has to generate the
website HTML from the commands that you have given it -
and this conversion takes time. Not long, to be fair, it is
pretty quick, but still takes longer than just giving the user
the HTML. There is a special command called CheckCache.
You place this command at the start of the script with the
file name that a cached version of this page is stored as,
along with how many seconds the cached version should
be kept for. This is the magic part! If the cache file doesn't
exist, once the script has finished, the output is saved as
the cache file name, meaning that next time someone runs
it, the cache file is used instead!

We set an expiry for the cache in case we at any point
make an update to the page, we want the new version to
appear instead of the old one. I suggest 86400 seconds,
which is 24 hours, as a good cache level.

So, at the start of my script on my default page, I am
going to add:
CheckCache 86400 "SiteDefault";

How much faster actually is it? Let's run a test!

Running the page without Cache: 917 milliseconds to load
page, 3.24 seconds total including fonts and images

Running the page with Cache: 794 milliseconds, 2.10
seconds total, as can be shown below:-

So it would normally take 0.9 seconds to run the page
after you have loaded all the images and fonts onto your
computer in the first usage, but with the cache it is a full
0.12 seconds quicker! This will depend on how many
people are currently connected to the server and how
much work it is doing, so the time for the non-cached
version could increase exponentially, but the cached
version will always be about 0.7 seconds, and save the
server some hard work.

Designing a Program

U nderstanding a language is only part of the story of
learning to program. Just because you can speak
English, doesn't mean you can write a story.

Programming is similar to this analogy. I was always taught
by my English teacher that you should plan a story like a
sausage - the first bite should entice you in, the majority of
the sausage is the real meat of the story, and the end should
be satisfying. You may or may not realise, but the biggest
part of programming is working out the solution to a
problem - turning it into something the computer
understands is the easier part, as long as you know the
right commands.

In programming, our start point is a problem statement
- what is it we want our program to do? Next, we need to

list Parameters for how our program is going to do this.
Finally, we need to have an understanding on what the
Result of this program should be. If you are used to
programming, you may recognise this as the standard
"Input -> Process -> Output" pattern that pervades every
part of program design.

Now, I know you are missing having more examples of
making cups of tea, so let me disappoint you no more! Yes,
we are going to make more cups of tea. This time though,
we are going to make it in a cafe instead!

Problem Statement

You have just started your brand new business - running
a cafe! To keep things simple at the moment you are just
selling cups of tea, but your aim is to try and make a much
profit as you can in just 8 (game) hours. You need to
purchase your ingredients, charge for your drinks, keep
your water hot, and keep your customers happy!

Some Parameters for our solution

• Water temperature in our Kettle drops at a constant
rate of 1°c every 10 seconds until it reaches room
temperature.
• Room temperature is 26 degrees.
• It takes 1 second to add 250ml of water to the kettle.
• Water is 6 degrees from the tap.
• Adding cold water to refill the kettle reduces the
temperature to a new level by the following formula:

• New temperature = (water in kettle / (kettle +
250)*kettle temperature) + (250 / (kettle + 250)* 6)

• The kettle can hold 3 litres of water (it's a big one for
the cafe!)
• The kettle has to have 500ml in to boil
• Boiling the kettle increases the temperature per second
by the following formula:

• 250/water in kettle
• A cup of tea is sold for 50p
• A cup of tea uses 150ml of water
• A tea bag costs 4p
• Each spoon of sugar costs 3p
• Each additional 5ml of milk costs 2p
• Electricity per second costs 0.1p while boiling

Worked examples of cost

You have to think about how much water you will put in
your kettle to boil, as it is the most expensive part of any
calculation if you get it wrong, and can have a disastrous
effect on your profits! Let's take two examples, for your first
customer of the day:-

Selling a cup of tea with 2 sugars and 50ml milk, boiling
the kettle from empty to full:-

Tea bag = 4p
Sugar = 6p
Milk = 20p
Electricity takes (100−Kettle temp)÷(250÷Kettle water

level) seconds, which for 3000ml at 6 degrees is 1128
seconds or £1.128

Total cost = £1.428 so a loss of 93p!

Selling a cup of tea with 2 sugars and 50ml milk, boiling
the kettle from empty to minimum:-

Tea bag = 4p
Sugar = 6p
Milk = 20p
Electricity takes (100−Kettle temp Boiling the

kettle)÷(New temperature Boiling the kettle−Kettle temp
Boiling the kettle) seconds, which for 500 at 6 degrees is
188 seconds or 18.8p

Total cost = 48.8p so a profit of 1.2p!

When trying to break the problem down, I like to use
paper and a pen* (okay, iPad and Apple Pencil these days,
but it doesn't make any difference to the process) but you
can see a video of my thoughts to do with the kettle:-

So I have my concept, but now I need to start breaking

this down into smaller parts

Section Four - Netelligence

The Data

T he base of any system is the data stored within it.
Netelligence uses a very special data structure. I
invented it, so have given it the name "semantic self-

describing network". Semantic means, well, meaning, and
the network itself stores not only the data, but the meaning
behind that data to make it information. Therefore this
network could be seen as having an element of intelligence.
Combine network and intelligence together - and you get
Netelligence.

This is not going to be a detailed look at the data
structure at this stage, but I feel it's important to
understand the basics here. More detail is given at the end
of the book.

Unlike a standard database, where you have to work out
what tables of data you want to create ahead of creating the
actual program that will use the data, the Netelligence
network has a very simple structure which is always the
same, yet can be used for any kind of program. It can be
created in a database, in flat files, in memory objects, any
way you wish really, but it is made up of just two
components - Nodes and Links.

That which we call a Node by Any Other
Name would smell as sweet

Sorry to Shakespeare there in destroying his beautiful
words from Romeo and Juliet! A Node is a technical name
for an object on the network. Over the last 10 years I have
refined the structure of the Netelligence network system
and have boiled down the object to always and only contain
the following pieces of data:

Item Id: A Unique Identifier
Application Id: A Unique Identifier, the ID of the

application that was used to create this object
User Id: A Unique Identifier, the person that made this

object
Type Id: A Unique Identifier, the type of object
Title: a 300 character text field
SubContent: a 300 character text field
Content: a text field of 1000 characters
Value1: A decimal number
Value2: A decimal number
Value3: A decimal number
Date1: A date time field

Date2: A date time field
Date3: A date time field
BooleanValue: True or False
Active: True or False
Date Created: Date and time the object was created
Last Updated: Date and time the object was last updated

So, how does this single structure work for everything
you may need? Well, this is a self-describing network.
There is a node of type "Type" that describes what each of
the fields are used for, for that particular named type.

In life, it is the connections you have to an
object that matter, not the object itself.

What makes Netelligence such a powerful data storage
and manipulation tool isn't the objects themselves, it's the
links that can be formed between the objects. These links
also have a specific format:

Item 1 ID: a unique identifier, the parent object
Item 2 ID: a unique identifier, the child object
Link Type ID: a unique identifier, type of link this is
Extra Info: A 300 character text field
Value Info: a decimal number
Confirmed: True or False
Link Created: Date and time the link was created
Link Last Updated: Date and time the link was last

updated

So, just how can these form a useful way of storing and
utilising data? Let's do a quick example:

Let's say Person A wishes to create a meeting. Person A is
a Node in the network, and the Meeting request is a second
node. Let's make the meeting request a child node of
Person A.

Now say Person A invites Person B, C and D to the

meeting, and sets the meeting in Room 10. All of these

objects also become parents of the meeting request :-

We still know who set the meeting, because the meeting

request contains the name of the person that created it. On
the relationship links between the objects, we can set a
Boolean value to "false" if a person has not confirmed their
attendance, and "true" when they confirm they are going.

Assumes that Person A is going - they called the meeting,

after all! Note that the room is now "booked" for the
meeting, so is set to "true" on the relationship too.

This relationship data structure is already incredibly
useful. If you need to see if someone is free at any point,
you just look at the meetings attached to that person to find
a time they are not in a meeting. Need to find a room for a
meeting? Look at what meetings are already attached to
that room, to find gaps.

When the meeting starts, the "true" and "false" values can
be used to form a record of who attended and who didn't.
The minutes can be directly attached to the meeting
request to make them easy to find. Any action points can be

connected both to the minutes and to the person that
needs to perform the action.

When a person completes an action point, it can be

marked as "completed", so by looking at the meeting
minutes you can instantly see the status of any action
points. All the information is easy to find and analyse. Try
doing something like this, quickly and easily, with a
standard normalised database!

The flexibility of this structure allows for changes and
additions to the overall system without much in the way of
extra work. To make it totally self-describing, the data
needs to be able to be converted into information. To do
this, it needs processing. This means that there needs to be
a programming language that the system can utilise by
itself. This is where Vortex fits in. Without Vortex, it would
be very difficult for the system to be "Self describing" to the
extent that I need it to be. I had decided upon HTML as the
output format, as something that is currently pretty

universal, and still easy to understand in it's source form to
someone that hasn't got a browser, but I needed a Server-
side language that I could have an element of control over.

A long time ago, I wanted to create a system that would
avoid the "digital dark age" - We are already in a world
where files created 20 years ago are harder for us to access
than books created 200 years ago. The concept behind
Netelligence is that with everything being self-describing,
somebody could take a completely new platform and create
a version of Netelligence for it, and all the code and data
would just work on it. It means the language needs to
somehow be self describing too. The method I set upon had
some advantages, but would cause other issues as well, and
getting something just working correctly would be my next
big challenge.

Using Node Types

E very node in our network has to have a specific
type, which is determined by the TypeID field of the
node. This type refers to another node, the Type

node, which is given a specific TypeID so that it can be
found in the network easily. This is one of the parts that
makes Netelligence so powerful - if you need a type of data
that is not currently in existence, you can create a new one!
It also means that all applications that need a specific form
of data can access the data no matter which application the
data was originally created in.

So, What sorts of types do we currently have in
Netelligence, and how are they used?

Let's start with the layout of the "Type" Node!

Title: Type Name
SubContent: (Not Used)
Content: Fields Comma Separated
Value1: Version
Value2: (Not Used)
Value3: (Not Used)
Date1: (Not Used)
Date2: (Not Used)
Date3: (Not Used)
BooleanValue: (Not Used)

For other nodes, I am going to not include the unused
fields, so it would appear as:

Title: Type Name
Content: Fields Comma Separated
Value1: Version

So the Title field tells you the name of the Type. The only
other two fields of the node that are in use for this
particular type is the Content field, which is a comma
separated list of which fields are in use, and Value1, which
gives you a version number. This means that you can
update a type in the future and older items of a previous
type will still work. Each type is given a unique ItemID,
which forms the TypeID field of the node that is set to this
type.

The way the Fields that are comma separated works is
that the labels are in order "Title, SubContent, Content,

Value1, Value2, Value3, Date1, Date2, Date3, BooleanValue"
and each field that is used has a name, and if a field is
unused it is left blank. So the Content for the Type of type
"Type" is "Type name ,, Fields Comma Separated,
Version,,,,,,".

Let's look at a "To Do" item:

Title: Title
Content: DescripRon
Value1: Priority (1-5)
Value3: Reminder
Date1: Due Date
Date2: Completed Date
Date3: Completed

The items should be pretty self explanatory with what
they do - That's another benefit to Netelligence! At the
moment, everything is in English, but in the future, just like
with the Vortex code, it will allow for translations too.

Possibly the most important node is the User node:

Title: Username
SubContent: Email Address
Content: Password
Value1: Personal Role Type
Value2: Sub Role Type
Value3: Phone Number
Date1: Premium Expiry
Date2: RegistraRon Date
BooleanValue: AcRve

Because to access the Netelligence system in Read/Write
mode, you have to have a user account. Netelligence and
Vortex have a built-in Login and Registration system that
make it easy for anyone to set up an account, and once
logged in you are automatically logged in as a user to any of
the Netelligence programs that you wish to use, via a
special JSPart or by allowing the user to directly login to
your application - whichever you prefer.

The password, you may worry, isn't safe being stored in
the same network that everything else is available in. Well,
do not fret, it is secured with Blowfish encryption. While
the content is text, it can be used to store any information
that you like, because you are able to convert the data into
however you want using Vortex code and the next trick we
are going to look at - Render!

Just so you know, there are over 50 Types currently
associated with Netelligence, which will be listed at the end
of the book just like the commands are!

The Node Renderer

T here is a very special command in Vortex, that is the
whole reason this language was created for
Netelligence. That command is Render.

The command is really easy to use, and really powerful.

Render "node id";
Render "node id" "template";

What this does is run the node through a script which is
stored in a special Render typed node so that the node can
be displayed on the screen. Render nodes are children of

the Type nodes that they get applied to. If you use Render
without a template name, it will use the Render node called
"Default" if there is one connected to the type, or if there
isn't, there is a completely default script on the system
that's just loads up the Node as a table showing the name of
each field that is present and the value of the node. All of
these Render script use a special word that is replaced with
the ID of the node that you are running the render against.
This word, imaginatively, is "NodeID".

So, the script for the default system render is as follows:-

<table>

<?
Var "Label" [NodeLabel NodeID "Title"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Title"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "SubContent"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "SubContent"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "Content"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Content"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "Value1"];
If (Label != "")
{

Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Value1"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "Value2"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Value2"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "Value3"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Value3"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "Date1"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Date1"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "Date2"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Date2"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "Date3"];
If (Label != "")
{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "Date3"] "</td></tr>"];
};

Var "Label" [NodeLabel NodeID "BooleanItem"];
If (Label != "")

{
Write [Combine "<tr><td>" Label "</td><td>" [Node
NodeID "BooleanItem"] "</td></tr>"];
};
?>
</table>

The command NodeLabel finds out what the field is
called for that particular type. By checking to see if the
label is blank, we only show those fields that are in use for
the type. This default is what is used if the requested
template is not found too.

Render is the key command that gives Netelligence it's
power - Self describing data. It doesn't matter if you don't
have any applications at all, all the data remains human
readable via this command. Your data will always be
readable, no matter whether the applications you use
stop existing. This key tenet is the basis of keeping
data available for the longest time possible, so we do
not end up with the digital black hole where data is
forever lost just because it can't be read anymore.

So, how do you create your own render scripts? Well,
there is actually a Render.Create command too!

Render.Create "Type name" "Template Name" { <!--
Template -->};

My process for creating a type is to start with a node of
that type, think of a design, and then produce a script using
that node. I use trial and error come up with a design I like,
then when I'm done I use Render.Create with the script

(slightly modified to use NodeLabel and NodeID where
required) and I know what to expect it to look like!

Let's go through the process with a "To Do" item, which
would form part of a to do list. First, let's look at what
elements make up a "to do" item:

To Do
Title: Title
Content: DescripRon
Value1: Priority (1-5)
Date1: Reminder
Date2: Due Date
Date3: Completed Date
BooleanValue: Completed

I want to start by focusing on the non-date items. I'm
thinking of the priority being shown based on colour, the
title clear and the description shown and hidden when you
click on the title. If the to do item has been completed, the
text should be crossed through.

So, first I need my 5 colours:

I've just randomly taken 5 colours I
think will be good and quickly put
them together in a paint package to
see how they look - red for 1, orange
2, green 3, teal for 4 and blue for 5.

I can use a paint program to get the
RGB or Hex values for these, so will
use RGB for the sake of clarity for my

example!

My script is currently as follows:

<html>
 <head>
 <Title>To Do Item Example</Title>

<?
AddCSSPlaceholder;
AddJSPlaceholder;
AddJSPartDelayed "Ajax2";
AddJSPartDelayed "ShowHide";

?>
 <style type="text/css">

 .ToDo
 {
 border: solid black 1px;
 padding:5px;
 font-weight: bold;
 }

 .Desc
 {
 display: none;
 font-weight: normal;
 }

 .Priority1
 {
 background-color: rgb(232,114,98);
 }

 .Priority2
 {
 background-color: rgb(241,164,85);
 }

 .Priority3
 {
 background-color: rgb(160,191,131);
 }

 .Priority4
 {
 background-color: rgb(143,196,182);
 }

 .Priority5
 {
 background-color: rgb(114,168,204);
 }

 </style>
 </head>
 <body>
 <div class="ToDo Priority1">
 <div onclick="ShowHide('item');">
 Title
 </div>
 <div id="item" class="Desc">
 DescripRon
 </div>
 </div>

 <div class="ToDo Priority2">
 <div onclick="ShowHide('item2');">
 Title
 </div>
 <div id="item2" class="Desc">
 DescripRon
 </div>
 </div>

 <div class="ToDo Priority3">
 <div onclick="ShowHide('item3');">
 Title
 </div>
 <div id="item3" class="Desc">
 DescripRon
 </div>
 </div>

 <div class="ToDo Priority4">
 <div onclick="ShowHide('item4');">
 Title
 </div>
 <div id="item4" class="Desc">
 DescripRon
 </div>
 </div>

 <div class="ToDo Priority5">
 <div onclick="ShowHide('item5');">
 Title
 </div>
 <div id="item5" class="Desc">
 DescripRon
 </div>
 </div>

 </body>
</html>

Which on a page looks like

Where the description hides and appears as you click on
the item. While this looks good, at the moment it is a mock-
up of a list of nodes made in HTML. Luckily, I do actually
have a to do list that I can start by utilising. These are
attached to my "profile" nodes that are child nodes of my
user record. I can get a list of these and create a Node
Group, to look at them as a proper list:

Which looks boring, as it is all at level 3, but at least does
show it works with a node! We will go through how Node
Groups works very soon, but we can at least look at the
code I have ended up producing for the To Do item, where
ItemData is where I am storing the Item ID for the Node:-

Write [Combine "<div class=\"ToDo Priority" [Node
ItemData Value1] "\">"];
Write [Combine "<div onclick=\"ShowHide('"
ItemData "');\">"];
Write [Node ItemData Title];
Write "</div>";
Write [Combine "<div id=\"" ItemData "\"
class=\"Desc\">"];
Write [Node ItemData Content];
Write "</div>";
Write "</div>";

While this all works, that takes a lot of different
commands to run - 8 "Write" commands with a whole host
of "Combine"s and "Node"s. We can simplify it right down
to accelerate its performance:-

Write [Combine "<div class=\"ToDo Priority" [Node
ItemData Value1]

"\"><div onclick=\"ShowHide('" ItemData "');
\">"

[Node ItemData Title]
"</div><div id=\"" ItemData "\"

class=\"Desc\">"
[Node ItemData Content]
"</div></div>"];

It still isn't quite yet in a format we can use with Render.
If we copied all of this code into our Render command, it
would create a whole page each time, and duplicate all of
the css styles. Therefore we need to turn this into a
component and remove the HTML that would be part of
the page the component would be on:-

<?
Component.Template "ToDoItem"
{

<?
<!-- We need the JS for the ToDo Item -->
AddJSPartDelayed "Ajax2";
AddJSPartDelayed "ShowHide";
<!-- We need the CSS for the ToDo Item -->
AddCSSPartDelayed ".ToDo" "border: solid

black 1px; padding:5px; font-weight: bold;";
AddCSSPartDelayed ".Desc" "display: none;

font-weight: normal;";
AddCSSPartDelayed ".Priority1" "background-

color: rgb(232,114,98);";

AddCSSPartDelayed ".Priority2" "background-
color: rgb(241,164,85);";

AddCSSPartDelayed ".Priority3" "background-
color: rgb(160,191,131);";

AddCSSPartDelayed ".Priority4" "background-
color: rgb(143,196,182);";

AddCSSPartDelayed ".Priority5" "background-
color: rgb(114,168,204);";

<!-- Needs the identifier, value, min then
max: -->

Write [Combine "<div class=\"ToDo
Priority" [Node {0} Value1] "\"><div
onclick=\"ShowHide('" NodeID "');\">"

[Node {0} Title]
"</div><div id=\"" NodeID "\"

class=\"Desc\">"
[Node NodeID Content]
"</div></div>"];

?>
};
Component.Create "ToDoItem";
?>  

Parents and Children

N etelligence is a hierarchical graph network, which
means that each node has to be a parent or a child
of another node.

Creating and Linking Nodes

W

Updating Nodes

W

Section Five - Vortex Coding
Patterns

The Netelligence Program Pattern

W hen you create a Netelligence program, You
need to set up specific scripts for the program
to be picked up with the correct files.

appIcon.png - This is the icon that appears on the tab
bar and the menu for applications, and should be 100px x
85px in size.

Default.vtx - the script that runs initially in the main
window

Menu.vtx - the script that runs as the menu bar when
you click the menu icon

Sidebar.vtx - the script that runs as the shortcut bar on
the right hand side. If you want to create graphics for your
buttons, these should be 38px x 50px in size

Home.vtx - If your application can have a home screen
widget, this is the initial script that runs for that widget.

useFiles - If your application needs to initially ask for a
file to open, add this empty file into your folder. The
presence of this file informs the system to first of all ask for
a file before passing this through to your application.

The Graphic generate Pattern

T he first sentence

Same as Netelligence, but need a file that can be called as
an image - QR example:

Default.vtx

<?
<!--
Last Updated: 16/4/2020
Purpose: A very simple QR Generator!
-->
FormPostBack

{
Write [Combine "<img width=\"250\"
src=\"Default.aspx?Content=QR/
QR&id=" [Date.GetDate "ddMMyyHHmmss"] "\" />"];
}
Else
{
Write "<div id=\"CalcResult\"></div>";
HTML.CreateForm "frm1" "Standard" "/Default.aspx"
{

HTML.Hidden "ResponseObject" "CalcResult";
HTML.Hidden "Message" "Please Wait...";
HTML.Hidden "ItemContent" "qr/default";
HTML.Hidden "Source" "qr/default";

 Write "Type your URL:";
 HTML.Text "txtCalc" "https://
www.google.co.uk";
<!-- Show the run button: -->

Write "Run!
";
 };
};

?>

QR.vtx

<?
QR.GenerateURL "test" txtCalc;
Graphic.OutputPNG "test";
?>  

The Ajax Form Post-back Pattern

T he first version of the calculator that I produced for
Netelligence was very simple, and uses the Ajax
command "AjaxFormAddResponse" - which means it

posts back to the server then adds the response into the
identified container on the screen. In just a single script file
you can set exactly what to do both on the first time the
script is run, and what to do when the same script is called
on an Ajax Form Postback. Let's start by looking at this
code. First, I'm highlighting the code that runs on first
load:-

<?

<!--
Last Updated: 16/4/2020
Purpose: A very simple calculator!
-->
FormPostBack
{
Write [Combine txtCalc "=

 " [Calculate txtCalc] "
"];
}
Else
{
Write "<div id=\"CalcResult\"></div>";
HTML.CreateForm "frm1" "Standard" "/"
{

HTML.Hidden "ResponseObject" "CalcResult";
HTML.Hidden "Message" "";
HTML.Hidden "ItemContent" "calc/default";
HTML.Hidden "Source" "calc/default";

 Write "Type your calculation:";
 HTML.Text "txtCalc";
<!-- Show two different controls - update or
cancel: -->

Write "Run!</
a>";
 };
};

?>

You can see that what this does is set up a div box called
"CalcResult", and underneath this is a standard HTML form,
with some special information in. The ItemContent
specifies what script on the server should run, and the
source is where this form is coming from. Because these are
both the same, when the code runs on the server it is told
this is a post back so knows to run the other part of the
code. You can see that the response object is set to

CalcResult, and we are using AjaxFormAddResponse, so
whatever is currently in CalcResult is added to, rather than
overwritten.

The code that runs on post back is much more simple:-

<?
<!--
Last Updated: 16/4/2020
Purpose: A very simple calculator!
-->
FormPostBack
{
Write [Combine txtCalc "=

 " [Calculate txtCalc] "
"];
}
Else
{
... Other code ...
};

?>

It just writes two lines on the screen - the calculation you
have typed in, the equals symbol, and on the next line
slightly indented it performs a Calculate inline with the
code on what you typed in, so displays this.

This is a standard pattern in Vortex, which is designed to
allow scripts to have a different "set up" to what happens on
a post back to it.

The Ajax Form Dialog Pattern

T he first sentence

Standalone Vortex Code (Single script)

T he first sentence

• The base system available as a zip file
• Setting up an application on the system
• Using the Settings.aspx to set up your server
• Connecting to a Netelligence server database
• Creating a simple calculator from base system

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN">  
<html>  
<head>  

<title>My Simple Calculator</title>

<script src="js/jquery-3.3.1.min.js"></
script>  

<script type="text/javascript">

<?
AddJSPart "AjaxForm";
AddJSPart "AjaxPost";

?>

</script>

</head>  
<body>  
<?
FormPostBack
{
Write [Combine txtCalc "=

 " [Calculate txtCalc] "
"];
}
Else
{
Write "<div id=\"CalcResult\"></div>";
HTML.CreateForm "frm1" "Standard" "/"
{

HTML.Hidden "ResponseObject" "CalcResult";
HTML.Hidden "Message" "";
HTML.Hidden "ItemContent" "calc/default";
HTML.Hidden "Source" "calc/default";

 Write "Type your calculation:";
 HTML.Text "txtCalc";
<!-- Show two different controls - update or
cancel: -->

Write "Run!</
a>";
 };
};

?>  
</body>  
</html>

Graphic Manipulation

T he first sentence

Simple 3D

T he first sentence

• Setting up an a-frame environment
• Building objects
• Use of the camera and controls

<html>
 <head>
 <title>
 My 3D World
 </title>
 <meta name="viewport"
content="width=device-width, initial-scale=1.0">
 <?

 Aframe.CreateHeaders;
 ?>
 </head>
 <body>
 <div style="height:600px; width:100%;">
 <a-scene physics anti-alias
embedded>
 <?
 Aframe.Sky "#8CCBF2";
 Aframe.RotateY 0;
 <!-- Start by creating
the floor layout: -->
 Aframe.FloorPlane -100
-100 200 -1 200
 {

color=rgb(128,128,128);
 };
 <!-- Now for the objects
-->
 <!-- Type of object,
colour, rotation, X, Y, Z, Width, Height, Depth-->
 Function "AddWall" (X Z
Width Depth)
 {
 Aframe.Object "Box"
"rgb(255,0,0)" "0,0,0" X -1 Z Width 5 Depth
"Static";
 };
 AddWall (-99 -100 198
1);
 AddWall (-100 -100 1
200);
 AddWall (-99 -1 95 1);
 AddWall (-4 -4 1 8);
 AddWall (3 -4 1 8);
 AddWall (3 -5 10 1);
 AddWall (-3 3 6 1);
 AddWall (4 3 30 1);
 AddWall (7 -1 92 1);
 AddWall (99 -100 1 100);

 AddWall (-42 -26 1 22);
 AddWall (-42 -27 18 1);
 AddWall (-34 -5 1 4);
 AddWall (-29 -5 1 4);
 AddWall (-24 -35 1 30);
 AddWall (-26 -17 44 1);
 AddWall (-18 -35 26 1);
 AddWall (-23 -27 20 1);
 AddWall (-18 -23 5 1);
 AddWall (-13 -23 1 6);
 AddWall (3 -27 1 10);
 AddWall (-31 -17 1 8);
 AddWall (-34 -9 6 1);
 AddWall (-10 -11 1 11);
 AddWall (-4 -11 21 1);
 AddWall (17 -11 1 11);
 AddWall (7 -35 1 15);
 AddWall (8 -29 10 1);
 AddWall (17 -23 1 6);
 AddWall (23 -29 1 28);
 Aframe.Object "Sphere"
"rgb(255,255,255)" "0,0,0" 0 -1 -2 0.25 0.25 0.25
"Dynamic" "0.01";
 ?>
 <a-entity id="Avatar" look-controls
cursor="rayOrigin: mouse" kinematic-body movement-
controls wasd-controls="acceleration:10"
position="0 0 0">
 <a-entity laser-
controls="hand: right">
 </a-entity>
 <a-entity camera position="0
1.8 0">
 </a-entity>
 </a-entity>

 </a-scene>
 </div>
</body>
</html>  

Building a Unit Test Rig

T he first sentence

• Setting up an a-frame environment
• Building objects
• Use of the camera and controls

<?
 Clear;
 Debug.Clear;
 Script.Check
 {
 Var "X" 4;
 Var "Y" 3;
 DebugTree Variables;
 }
 ()
 {
 Var "X" 4;
 Var "Y" 3;

 Write [Combine X Y];
 }
 (43)
 {
 Var "X" 4;
 Var "Y" 3;
 Write [Combine X Y];
 }
 (43)
 {
 Var "X" 4;
 Var "Y" 3;
 Write [Combine X Y];
 }
 (43);
 Display DebugLog;
?>  

Section Six - More in-depth
examples

Complex Components

C omponents are incredibly powerful constructs.
Because they can be run as scripts, we can create
them with included form post backs as well as

linking to existing JSPart files and adding our own
JavaScript. If we use a JSPart that in itself calls a JSPart as a
dependent file, using AddJSPartDelayed automatically
converts any AddJSPart commands into delayed
commands too, so the structure of the page is not broken.

Look at the command search control

<?
FormPostBack
{

 <!-- This script is designed to find partially matching
commands and return them formatted for the terminal.
Requires variable Ser for the search -->

Expected "Var" ("Ser")
{
Var "Ser" "AllCommandsPlease!";
};

If(Ser == "AllCommandsPlease!")
{
 VarArray "X" [ArrayCommands];
}
Else
{
 VarArray "X" [ArrayCommands Ser];
};
Var "D" [Combine ID ".Drop"];
HTML.Dropdown D X [Combine "GetDetailsDrop('" ID "',

'" OPut "')"];

}
Else
{
<!-- Build the component to show on the screen -->
AddJSPartDelayed "ajax2";
AddJSPartDelayed "Sanitise";

AddJSInternal "GetDetailsDrop"
{
function GetDetailsDrop(id, output)
 {

 AjaxGet(SanitiseScript(" CommandDetail \"" +
ele(id+".Drop").value + "\"; "), output, "Please Wait...", "",
"Direct");

 }
};

AddJSInternal "GetCommand"
{
function GetCommand(id, output)
 {
 if (ele(id+".Text").value == "")
 {
 AjaxGet("CommandSearchControl",

id+".Result", "Please Wait...",
"FromAjaxForm=True&ID="+id+"&Ser=AllCommandsPlease!
&OPut="+output);

 }
 else
 {
 AjaxGet("CommandSearchControl",

id+".Result", "Please Wait...",
"FromAjaxForm=True&ID="+id+"&Ser="+
ele(id+".Text").value+"&OPut="+output);

 }
 }
};

Component.Template "VortexCommandSearch"
{

<input id="{0}.Text" oninput="GetCommand('{0}', '{1}');" />

<?

 Var "Ser" "AllCommandsPlease!";
 VarArray "X" [ArrayCommands];
 HTML.Dropdown "{0}.Drop" X

"GetDetailsDrop('{0}', '{1}')";
?>

Details
};
};
?>

How this control was constructed originally
Adaptations that needed to be made

Section Seven - Hurricane
OS

The User Interface

T he user interface described here is completely a
version 1 prototype, so by the time you read this
book, who knows what it will look like! There were

some clear design goals that I set myself when producing
this system, and they will not be unfamiliar to geeks of a
certain age, for whom a specific computer holds so much
nostalgia and promise....

The Psion 5 series device. 640 x 240 screen resolution,
backlit when required. If you squint closely, you may see
similarities to my current layout:

This is my version running on the Gemini - 2160 x 1080
resolution, but the screen's physical size is not much
different, and the Psion had a stylus whereas we use our
finger on the Gemini. This means that some changes had to
be made because a finger isn't as precise as a stylus. The
main aim of the system though is the same - a clear layout
that makes complete use of the size of the screen that we
have, not cluttering it up with unnecessary lost space. I

tried using Microsoft Word on the Gemini - just look how
much screen space is wasted:

While it is nice to have lots of free space, the controls
take up 370 pixels out of the 1080 height - over 34% of the
screen! On Netelligence, the tab bar can be hidden as can
the right hand shortcut bar to give as much space as you
may require to get your work done.

So, what does this UI actually mean and do? Let's break
down the screen to it's different components.

There are 7 layers that make up Netelligence:

1. The tab bar
2. Menu bar
3. The shortcut bar
4. The main application window
5. The main menu
6. The menu dialog
7. The main dialog

Layer 1, at the very base, is the tab bar. You can have up
to 8 applications running at any one time, taking up the 8
slots that in the example show the word "add..." to show
there is a free slot. When you click this, you get a list of
applications to choose from for that slot and that can then
be switched to instantly when you click on that button. At
the far left end is the "Home" button, that takes you to a
home screen.

Layer 2 is the left hand Menu bar. This has 6 different
controls on it - Show and hide main menu, search, share,

communicate, zoom in and zoom out. These are system
wide controls. You can show and hide the main menu (layer
5) with the menu button.

Search should be something useful in nearly every
application type, but is handled directly by the currently
open application. Share is also handled by the application
directly.

Communicate is a system screen, and has a whole other
UI to talk about elsewhere! Mainly because at the time of
writing this, it doesn't yet exist...!

Zoom in and out should work with all of the text on the
interface, making it easier to see if it is too small for
someone's eyesight.

Layer 3, the shortcut bar, can be visible or hidden. It
should contain useful shortcuts to save time in finding the
option in the menu, but everything that is in the shortcut
should be possible to do from the menu as well. Although it
is conceived as what you see in my example, it is HTML /

JS / CSS / Vortex code, so can actually be anything you need
it to be for your application.

Layer 4 is where the magic happens. What made Psion
devices so powerful was the number of developers building
useful applications for it, and I want to continue that
tradition here in my system too.

Layer 5 is a menu that appears over the top of the
screen, just like you see in Windows or OS X. While it can
be text that is spaced out to fit menu dialogs underneath, it

is HTML / JS / CSS / Vortex code, so can actually be
anything you need it to be for your application.

Layer 6 is the menu dialog that appears normally when
you click on a menu bar item. It is HTML / JS / CSS / Vortex
code, so can actually be anything you need it to be for your
application. Only one dialog can appear on the screen at
any one time.

Layer 7 is the menu dialog that appears normally when
you need a dialog box to appear. It is HTML / JS / CSS /

Vortex code, so can actually be anything you need it to be
for your application. Only one dialog can appear on the
screen at any one time.

The whole purpose of the user interface is that it works
on any device, so you can switch between things and go.
Currently it isn't designed for the biggest market there is in
internet-linked computer based devices - mobile phones -
which may be a drawback, but it is designed for tablets,
palmtop computers, laptops and desktops. There will be a
phone version, I am sure of that, but the interface would
need a major overhaul!

It does work on a phone in both portrait and landscape:

But as you can see, it isn't really well designed for an
iPhone SE (2018 model) with just an on screen keyboard for
company!

While this version of Netelligence does include the Vortex
programming language, it is only really suitable for small
programs. I use a text editor on my iPad to develop my
Vortex applications, rather than my own IDE, but that is
because I am still trying to develop it into something that
works for the system. Maybe by the time you read this it
will now be much more fully-featured, but for the
meantime you can use it for creating simple scripts and
exploring some of the features that make Vortex unique.

Section Eight - Making
Vortex Better

Making your own Commands

T he first sentence

Where is Vortex headed?

T his is very much a version 1 language. Unlike other
languages like Swift where there is a change in how
your code has to look between versions 1 and 2,

Vortex code is already designed to be compatible with any
legacy code that you create, and it will even tell you in the
debug logs what you need to do to upgrade your code to
the latest version.

There are however some big changes coming in version
2, which I'm already planning for, and this follows on from
making your own commands. The C# code template for a
command will change, which will lead to having to
recompile the commands to the new template. This is

because the command will contain the code and the unique
identifier as it's base, then the description, use and
"Command name" stored in a separate text file structure,
which holds the unique identifier to run. This is so you
don't have to recompile the code each time you add
another human language to use with Vector, but in a better
way than the Map system currently used in version 1.

The next change is how the code is processed before
being run. It is currently changed into a tree structure that
still uses the command name to then run each command.
This conversion stage will instead use the unique identifier
to run the code with, and this tree structure will be able to
be saved as .vxt (Vortex Turbo) files and run without
needing to be reproduced from the script again -
accelerating the running of the scripts, and being a semi-
translated version so human language agnostic. It would
mean you can quickly translate between different human
languages too.

New commands are added on almost a weekly basis,
when I realise Vortex is missing something I need! By using
my own language as my primary programming language, I
can keep making sure that the language is useful in true
real-world environments.

Section Nine - Thank You!

Special Thanks

W hile writing this book I have had some help
from other people that I would like to thank
here.

Firstly James Stanley, one of my very first students and an
incredible programmer - much better than I am! He pointed
me in the direction of https://docs.google.com/
presentation/d/1kjC_L5C-
E2Y_wOVkblJxRr6GBgw1V_FBbFI4jAoh688/htmlpresent
when wanting information about CSS speed in "Making
websites cleaner" and then produced the code to actually
test my hypothesis! Thank you for all your support over the
years!

https://docs.google.com/presentation/d/1kjC_L5C-E2Y_wOVkblJxRr6GBgw1V_FBbFI4jAoh688/htmlpresent
https://docs.google.com/presentation/d/1kjC_L5C-E2Y_wOVkblJxRr6GBgw1V_FBbFI4jAoh688/htmlpresent
https://docs.google.com/presentation/d/1kjC_L5C-E2Y_wOVkblJxRr6GBgw1V_FBbFI4jAoh688/htmlpresent
https://docs.google.com/presentation/d/1kjC_L5C-E2Y_wOVkblJxRr6GBgw1V_FBbFI4jAoh688/htmlpresent

Michael Dowden, who graciously allowed me to use his
code for the CSS slide component in "Components". His
original is currently found at https://codepen.io/mrdowden/
pen/RwrKMzw and my version is in my chapter!

Declan Curzon-Hepworth, another of my ex student
fraternity, whose unwavering support with all my madcap
designs and plans keeps spurring me on!

Geoff Carter - again, standing behind me and giving me
the confidence to actually look at Vortex as a viable option
in actual commercialised software, and trusting me enough
to give his projects over to the Vortex treatment.

Paul Pinnock and the other people at Planet Computers,
for whom I had both got a focus for this project through
their hardware, and for the Psion 3a and 5mx computers,
still my all time favourite machines!

My Beta Readers - thank you for your feedback about this
book, for all your kind words and for your help to make
this book better than it was before!

https://codepen.io/mrdowden/pen/RwrKMzw
https://codepen.io/mrdowden/pen/RwrKMzw

Section Ten - Command List

Command List - Up to Date?

You can run the following script to generate this from
Vortex directly, to get the most up to date list, but as of
writing this book, this is my current command list.

<?
Clear;
VarArray "X" [ArrayCommands];
ForEachIn "X" {CommandUsage ItemData;};
?>

AddJavaScript
 AddJavaScript "URL to file";
 Just builds the HTML code to link a Javascript file to
the current HTML document
 AddJavaScript "file1" "file2" "file3";

 Builds separate references for each Javascript file link

AddJSInternal
 AddJSInternal "Identifier" {*javascript code to add*};
 adds the javascript into memory

AddJSPart
 AddJSPart "Part Name";
 Adds the Javascript function code into the document

AddJSPartDelayed
 AddJSPartDelayed "Part Name";
 Writes the JSPart into memory

AddJSPlaceholder
 AddJSPlaceholder;
 Writes a special character into the Output document
at this point in the code, and when the output has finished
being processed this will be replaced with any javascript that
needs assembling based on the commands run.

AddStyleSheet
 AddStyleSheet "URL to file";
 Just builds the HTML code to link a stylesheet to the
current HTML document
 AddStyleSheet "file1" "file2" "file3";
 Builds separate references for each stylesheet file link

Aframe.Box
 Aframe.Box "Colour" "Location" "Rotation" "Size"
"BodyType" ("Mass");
 Creates a box of the specific colour at the (centre
point) location, with the specific rotation and size. These
should be strings of three numbers "X Y Z" eg "0 0 0". the
Body type can be None, Static, Dynamic, or kinematic -
Mass should be included if the body type is dynamic.

Aframe.CanvasAsset

Aframe.CentreObject
 Aframe.Object "Type" "Rotation" X Y Z Width Height
Depth { Settings };
 Most flexible option - items that are any more
complex than type, rotation, location and size must be put in
curly brackets, separated by commas and type value pairs
use equals signs between them.

Aframe.CompressScene
 Aframe.CompressScene;
 Compresses where possible

Aframe.CreateHeaders
 Aframe.CreateHeaders;
 Adds in the Javascript links to Aframe, physics etc

Aframe.DelayWrite
 Aframe.DelayWrite;
 Start writing to memory

Write
 Write "What you want to put in";
 Simply adds the text to the output
 Write "Line 1" "Line 2" "Line 3";
 Adds each comment one after the other to the output

Aframe.EndDelay
 Aframe.EndDelay;
 Writes out the memory structure to output and deletes
it from memory

Aframe.EndDelayUnity
 Aframe.EndDelayUnity;
 Writes an output document in my unity engine
readable format

Aframe.FloorPlane
 Aframe.FloorPlane X Z Width Height Depth {Settings};
 Creates a Plane of the set size and orients it to be a
floor at the height specified. Always a solid object.

Aframe.GetCentrePoint
 Aframe.GetCentrePoint X Y Z Width Height Depth;
 Generates a string with the X Y Z values for the
centre point of the object

Aframe.ImageAsset
 Aframe.ImageAsset ID URL;
 Adds the asset as required. Put between the asset
tags

Aframe.nObject
 Aframe.nObject "Type" X Y Z Width Height Depth rX rY
rZ R G B { Settings };
 items that are any more complex than type, rotation,
location and size must be put in curly brackets, separated by
commas and type value pairs use equals signs between
them.

Aframe.Object
 Aframe.Object "Type" "Rotation" X Y Z Width Height
Depth { Settings } ("InternalObject");
 Most flexible option - items that are any more
complex than type, rotation, location and size must be put in
curly brackets, separated by commas and type value pairs
use equals signs between them. can also have objects
inside this one, eg entities
 Aframe.Object "Type" "Rotation" X Y Z Width Height
Depth { Settings };
 Most flexible option - items that are any more
complex than type, rotation, location and size must be put in
curly brackets, separated by commas and type value pairs
use equals signs between them.

 Aframe.Object "Type" "Colour" "Rotation" X Y Z Width
Height Depth "BodyType" ("Mass");
 Builds the type (box, plane, sphere, cylinder) - the
Body type can be None, Static, Dynamic, or kinematic -
Mass should be included if the body type is dynamic.

Aframe.Plane
 Aframe.Plane "Rotation" X Y Z Width Height {Settings};
 Creates a Plane of the set size and orientation.

Aframe.RotateY
 Aframe.RotateY "value";
 Set the Rotation to 0, 90, 180 or 270 for any new
scripted objects to run at a different angle

Aframe.Sky
 Aframe.Sky "Colour";
 Sets the Sky to this colour
 Aframe.Sky "Colour" "Src";
 Sets the Sky to a colour and the texture to an asset
previously specified

Aframe.VideoAsset
 Aframe.VideoAsset ID URL;
 Adds the asset as required. Put between the asset
tags

AppendLineToFile
 AppendLineToFile "Filename" "Data";
 Adds the new line data to the end of the file

AppendToFile
 AppendToFile "Filename" "Data";
 Adds the data to the end of the file

AppendToTopFile
 AppendToTopFile "Filename" "Data";
 Adds the data to the start of the file

ApplyTemplate
 ApplyTemplate "Filename" "item1" "item2" etc;
 Run the template selected file with the data and apply
to the output.

ApplyTemplateData
 ApplyTemplateData "TemplateData" "item1" "item2" etc;
 Run the template selected file with the data and apply
to the output.

ApplyToOutput
 ApplyToOutput "item1" "item2" etc;
 Run data and apply to the output. use "{empty}" to
replace an item with a blank.

Array
 Array "Item1" "Item2" "Item3";
 Specifies the items are all part of a collection, and will
process any commands used in place of an item

Array.Append
 Array.Append "ArrayName" "New item to add";
 Appends a new item into an array stored in the
VarArray

Array.Count
 Array.Count "ArrayName";
 How many items there are in the named VarArray

Array.Index
 Array.Index "Array Name" Index;
 Returns the array item at the given index from the
array variable

Array.Insert
 Array.Insert "Array Name" Index "Item";
 Inserts the item into the array at the given index

Array.RemoveAt
 Array.RemoveAt "Array Name" Index;
 Removes the item at the given index

Array.Replace
 Array.Replace "Array Name" Index "Item";
 Replaces the item at the index value with the new
value

Array.Reverse
 Array.Reverse "Array name";
 Reverses all the items in the list

Array.Sort
 Array.Sort "VarArray";
 Sorts the array into alphabetical order

ArrayCommands
 ArrayCommands (search);
 Shows all of the commands that match the search
term in an array
 ArrayCommands;
 Turns the commands into an array

Calculate
 Calculate "Query";
 Performs the calculation and puts it into place

CancelCache
 CancelCache;
 Stops building this into the Cache

CheckCache
 CheckCache 86400 FileName;
 If the filename exists and it's less than a day old, use
it, else build it!
 CheckCache ExpireTimeSeconds FileName;

 If the filename exists and it's before the expire time,
use it, else build it!

CheckLinkLogin
 CheckLinkLogin "Session ID" "Application ID";
 If request link login has worked on this username, this
will log them in. The link is only live for 5 minutes.

Clear
 Clear;
 Clears the output from memory
 Clear All;
 Clears everything from memory - Variables,
Nodegroups, etc
 Clear "VarArray";
 Clears the Array from memory
 Clear "Variable";
 Clears the variable from memory
 Clear "NodeGroup";
 Clears the NodeGroup from memory
 Clear "Graphic";
 Clears the Graphic from memory
 Clear "Scope";
 Clears all the items in the named Scope from
memory
 Clear "Function";
 Clears the function from memory
 Clear "Item1" "Item2" "Item3"...;
 Clears the items from memory, can have as many
listed as required

ClearCache
 ClearCache;

Code.Compile
 Code.Compile "ScriptFilename" "CompiledFilename" ;
 Compiles a script into the VXT format, saving the file
in the upload directory.

Combine
 Combine "Item1" "Item2" "Item3" ;
 Replaces the Token in the code with
"Item1Item2Item3"

Command.Options
 Command.Options "Command" "ArrayName";
 returns the options into the array

CommandDetail
 CommandDetail;
 View all the details about all the commands!
 CommandDetail "CommandName";
 View all the details about that command
 CommandDetail "CommandName1" "CommandName2"
"CommandName3";
 View all the details about the commands listed

CommandUsage
 CommandUsage;
 List all of the commands and all of the usages for
every command!
 CommandUsage "CommandName";
 View different usages of that command
 CommandUsage "CommandName1" "CommandName2"
;
 View different usages of the commands in the list

Component.Create
 Component.Create "Identifier" "Param1"... etc;
 Adds the component found in memory by the identifier
into the docment, filling out the template details with the
parameters.

Component.Template
 Component.Template "Identifier" { * code for template *};

 Adds the snippet of code into memory as a
component

CreateCommandCode
 CreateCommandCode "Namespace";
 Create the command with a specific namespace
 CreateCommandCode "Namespace" "NAME";
 Create the command with a specific namespace,
command name
 CreateCommandCode "Namespace" "NAME"
"Description";
 Create the command with a specific namespace,
command name, and description
 CreateCommandCode "Namespace" "NAME"
"Description" "Created By";
 Create the command with a specific namespace,
command name, the description for the command and set
who created it.
 CreateCommandCode "Namespace" "NAME"
"Description" "Created By" "NAME; - How to use";
 Create the command with a specific namespace,
command name, the description for the command and set
who created it, and how to use it
 CreateCommandCode "Namespace" "NAME"
"Description" "Created By" [Array "NAME; - How to use 1"
"NAME; - How to use 2"];
 Create the command with a specific namespace,
command name, the description for the command and set
who created it, and an array of items for how to use it!

CreateDirectory
 CreateDirectory "Root Directory" "Directory Name";
 Creates the directory

CreateKeywordList
 CreateKeywordList;
 Outputs the list

CreateType
 CreateType TypeName 'TitleLabel, SubTitleLabel,
ContentLabel, Value1Label, Value2Label, Value3Label,
Date1Label, Date2Label, Date3Label, BooleanItemLabel'
VersionNumber;
 Creates a new Type

CurrentDomain
 CurrentDomain; -What it does

CurrentNode
 CurrentNode; -What it does

Node
 Node "itemID" "field";
 Enters the data from the field of a specific Node via
ItemID into the script, if the application and/or the user has
permission to view that node.
 Node "groupname" "number" "field";
 Finds the node in the specified group at the specified
index and enters the data from the field into the script.
 Node "groupname" (Field Operator Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.
 Node "groupname" (Field == Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.
 Node "groupname" (Field != Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.

Date.AddDays
 Date.AddDays "Variable" Number;
 Adds the number of days to the date variable

Date.DateDiff
 Date.DateDiff "Date1" "Date2" Days;
 Gets the number of days between the two dates
(most recent date first)
 Date.DateDiff "Date1" "Date2" Weeks;
 Gets the number of weeks between the two dates
(most recent date first)
 Date.DateDiff "Date1" "Date2" Hours;
 Gets the number of hours between the two dates
(most recent date first)
 Date.DateDiff "Date1" "Date2" Minutes;
 Gets the number of minutes between the two dates
(most recent date first)
 Date.DateDiff "Date1" "Date2" Seconds;
 Gets the number of seconds between the two dates
(most recent date first)
 Date.DateDiff "Date1" "Date2" Milliseconds;
 Gets the number of milliseconds between the two
dates (most recent date first)

Date.DateEoW
 Date.DateSoW;
 Gets the date for Sunday in this week
 Date.DateSoW "dd-MM-yyyy";
 Get the Sunday for the week that date was in
 Date.DateSoW "dd-MM-yy";
 Get the Sunday for the week that date was in
 Date.DateSoW "dd-MMM-yyyy";
 Get the Sunday for the week that date was in

Date.DateSoW
 Date.DateSoW;
 Gets the date for Monday in this week
 Date.DateSoW "dd-MM-yyyy";
 Get the Monday for the week that date was in
 Date.DateSoW "dd-MM-yy";
 Get the Monday for the week that date was in
 Date.DateSoW "dd-MMM-yyyy";

 Get the Monday for the week that date was in

Date.Format
 Date.Format "Date" "[Standard Date String Format]";
 Formats the selected date in the specified format
(some examples shown below)
 Date.Format "Date" "dd-MMM-yyyy";
 Get the current date in the specified format eg 16-
Jul-2020
 Date.Format "Date" "dd-MM-yyyy";
 Get the current date in the specified format eg
16-07-2020
 Date.Format "Date" "dd-MM-yy";
 Get the current date in the specified format eg
16-07-20
 Date.Format "Date" "dd-MMM-yyyy hh:mm:ss";
 Get the current date and time in the specified 12-hour
format eg 16-Jul-2020 03:18:46
 Date.Format "Date" "dd-MM-yyyy HH:mm:ss";
 Get the current date and time in the specified 24-hour
format eg 16-Jul-2020 15:18:46
 Date.Format "Date" "hh:mm:ss";
 Get the current time in the specified 12-hour format
eg 03:18:46
 Date.Format "Date" "HH:mm:ss";
 Get the current time in the specified 24-hour format
eg 15:18:46

Date.GetDate
 Date.GetDate;
 Get the current date time
 Date.GetDate "[Standard Date String Format]";
 Get the current date in the specified format (some
examples shown below)
 Date.GetDate "dd-MMM-yyyy";
 Get the current date in the specified format eg 16-
Jul-2020
 Date.GetDate "dd-MM-yyyy";

 Get the current date in the specified format eg
16-07-2020
 Date.GetDate "dd-MM-yy";
 Get the current date in the specified format eg
16-07-20
 Date.GetDate "dd-MMM-yyyy hh:mm:ss";
 Get the current date and time in the specified 12-hour
format eg 16-Jul-2020 03:18:46
 Date.GetDate "dd-MM-yyyy HH:mm:ss";
 Get the current date and time in the specified 24-hour
format eg 16-Jul-2020 15:18:46
 Date.GetDate "hh:mm:ss";
 Get the current time in the specified 12-hour format
eg 03:18:46
 Date.GetDate "HH:mm:ss";
 Get the current time in the specified 24-hour format
eg 15:18:46

Debug.Alert
 Debug.Alert "Message";
 Adds the message into the debug log

Debug.Clear
 Debug.Clear;
 Clears the current Debug log

Clear
 Clear;
 Clears the output from memory
 Clear All;
 Clears everything from memory - Variables,
Nodegroups, etc
 Clear "VarArray";
 Clears the Array from memory
 Clear "Variable";
 Clears the variable from memory
 Clear "NodeGroup";
 Clears the NodeGroup from memory

 Clear "Graphic";
 Clears the Graphic from memory
 Clear "Scope";
 Clears all the items in the named Scope from
memory
 Clear "Function";
 Clears the function from memory
 Clear "Item1" "Item2" "Item3"...;
 Clears the items from memory, can have as many
listed as required

Debug.Off
 Debug.Off;
 Switches off Verbose command Debug logging

Debug.On
 Debug.On;
 Switches on verbose command debugging

Debug.UserAgent
 Debug.UserAgent;
 Adds the user agent string into the debug log

DebugList
 DebugList;
 Displays the current Debug List

DebugTree
 DebugTree FilesAccessed;
 Show the Files Accessed for the current debug tree
 DebugTree NodeGroups;
 Show the Node Groups for the current debug tree
 DebugTree VarArrays;
 Show the Arrays for the current debug tree
 DebugTree Variables;
 Show the Variables for the current debug tree
 DebugTree Commands;
 Show the Commands for the current debug tree

 DebugTree;
 Show everything on the current debug tree

DecryptFile
 DecryptFile "Filename" "Password";
 Decrypts the file with the password given

DescribeTemplate
 DescribeTemplate "TemplateName";
 View the fields in the template (if there is a description
file)

Directory.Exists
 Directory.Exists "Name";
 Checks to see if the directory exists.

Directory.GetDirectory
 Directory.GetDirectory "Variable" PartDirectory;
 Puts the full path of a directory into a new variable

Directory.GetFile
 Directory.GetFile "Variable" Filename;
 Puts the directory of a file into a new variable

DirectoryArray
 DirectoryArray "DirectoryPath";
 Converts the list of sub-directories in the directory into
an array.
 DirectoryArray "DirectoryPath" "Filter";
 Converts the list of sub-directories in the directory that
match the wildcard filter into an array.
 DirectoryArray "DirectoryPath" "Filter" "Full";
 Converts the list of sub-directories in the directory that
match the wildcard filter into an array but uses full path
names.

Array
 Array "Item1" "Item2" "Item3";

 Specifies the items are all part of a collection, and will
process any commands used in place of an item

Display
 Display ErrorLog;
 Write the Error Log into the Output
 Display DebugLog;
 Write the Debug Log into the Output

Do
 Do; -What it does

EmbedHTMLCodeFile
 EmbedHTMLCodeFile "Filename";
 Embed the selected file

EmbedJavaScript
 EmbedJavaScript "File1";
 Loads the contents of the file and embeds into the
page
 EmbedJavaScript "File1" "File2" "File3";
 Loads the contents of each of the files one after the
other and embeds into the page

EmbedStyleSheet
 EmbedStyleSheet "File1";
 Loads the contents of the file and embeds into the
page
 EmbedStyleSheet "File1" "File2" "File3";
 Loads the contents of each of the files one after the
other and embeds into the page

EmbedTextFile
 EmbedTextFile "Filename";
 Embed the selected file

EncryptFile
 EncryptFile "Filename" "Password";

 Encrypts the file with the password given

ErrorList
 ErrorList;
 Displays the current Error List

Example
 Example; -What it does

Expected
 Expected "Graphic" (GraphicName1, GraphicName1,
GraphicName1) {Code to run if not present};
 Check the expected graphics are present in memory,
if not then run the code in curly brackets
 Expected "Var" (VarName1, VarName2, VarName3)
{Code to run if not present};
 Check the expected variables are present in memory,
if not then run the code in curly brackets
 Expected "VarArray" (ArrayName1) {Code to run if not
present};
 Check the expected VarArrays are present in
memory, if not then run the code in curly brackets
 Expected "NodeGroup" (GroupName1) {Code to run if
not present};
 Check the expected NodeGroups are present in
memory, if not then run the code in curly brackets
 Expected "Var" (VarName1, VarName2, VarName3)
"NodeGroup" (GroupName1) "VarArray" (ArrayName1)
{Code to run if not present};
 You can do multiple checks at the same time, in any
combination, and run just one code base if anything missing

File.Delete
 File.Delete"Name";
 Deletes the file.

File.DirectOutput

 File.DirectOutput "Filename" "DownloadName";
-Outputs the filename given and attempts to stream it in the
browser
 File.DirectOutput "Filename" "DownloadName" True;
-Outputs the filename given and attempts to allow it to be
downloaded in the browser

File.Exists
 File.Exists "Name";
 Checks to see if the file exists.

File.OutputJPG
 File.OutputJPG "FileName";
 Outputs the Graphic with the filename as a JPG file

File.OutputPNG
 File.OutputPNG "FileName";
 Outputs the Graphic with the filename as a PNG file

FileArray
 FileArray "DirectoryPath";
 Converts the list of files in the directory into an array.
 FileArray "DirectoryPath" "Filter";
 Converts the list of files in the directory that match the
wildcard filter into an array.
 FileArray "DirectoryPath" "Filter" "Full";
 Converts the list of files in the directory that match the
wildcard filter into an array but uses full path names.
 FileArray "DirectoryPath" "Filter" "Prefix1";
 Converts the list of files in the directory that match the
wildcard filter into an array, adding the prefix to the name.
 FileArray "DirectoryPath" "Filter" "Prefix1" "Prefix2" etc;
 Converts the list of files in the directory that match the
wildcard filter into an array, adding the prefixes to the name.
 FileArray "DirectoryPath" OrderBy Name/CreatedDate/
UpdatedDate/Size (Desc);
 Converts the list of files in the directory into an array.

 FileArray "DirectoryPath" "Filter" OrderBy Name/
CreatedDate/UpdatedDate/Size (Desc);
 Converts the list of files in the directory that match the
wildcard filter into an array.
 FileArray "DirectoryPath" "Filter" "Full" OrderBy Name/
CreatedDate/UpdatedDate/Size (Desc);
 Converts the list of files in the directory that match the
wildcard filter into an array but uses full path names.
 FileArray "DirectoryPath" "Filter" "Prefix1" OrderBy
Name/CreatedDate/UpdatedDate/Size (Desc);
 Converts the list of files in the directory that match the
wildcard filter into an array, adding the prefix to the name.
 FileArray "DirectoryPath" "Filter" "Prefix1" "Prefix2" etc
OrderBy Name/CreatedDate/UpdatedDate/Size (Desc);
 Converts the list of files in the directory that match the
wildcard filter into an array, adding the prefixes to the name.

Array
 Array "Item1" "Item2" "Item3";
 Specifies the items are all part of a collection, and will
process any commands used in place of an item

ForEachIn
 ForEachIn "Scope" { [Code to perform]};
 ItemData is the name of the Variable/VarArray/
NodeGroup in the scope
 ForEachIn "Name" { [Code to perform]};
 If the Name is for a VarArray, Runs the code on each
item in the array listed.
 ForEachIn "NodeGroup" { [Code to perform]};
 Runs the code on each item in the NodeGroup.
 ForEachIn [Array "Item1" "Item2"] { [Code to perform]};
 Runs the code on each item in the Array.

FormPostBack
 FormPostBack { Code to run };

 If the FormVariableList or FormFileList VarArray
Exists, the code will be run and they will be cleared from
memory.
 FormPostBack { Code to run } Else { Code to run };
 If the FormVariableList or FormFileList VarArray
Exists, the first code will be run and they will be cleared from
memory, otherwise the second code will be run.

Function
 Function NAME { Code };
 The code to run
 Function NAME ("Var1" "Var2" "Var3") { Code };
 The code to run, with parameters passed through

GetAppFolder
 GetAppFolder;
 writes to the output the App Folder.

GetBetweenParentChild
 GetBetweenParentChild "Node Parent ID" "Node Child
ID" "Type" "NodeGroup";
 Sets the named NodeGroup to be the matching child
nodes
 GetBetweenParentChild "Node Parent ID" "Node Child
ID" "Type" "NodeGroup" Append;
 Adds the children if any of the selected node to the
named NodeGroup
 GetBetweenParentChild "Node Parent ID" "Node Child
ID" "Type" "NodeGroup" (field operator value [logic field
operator value]);
 Sets the named NodeGroup to be the matching child
nodes, given the filters applied
 GetBetweenParentChild "Node Parent ID" "Node Child
ID" "Type" "NodeGroup" Append (field operator value [logic
field operator value]);
 Adds the children if any of the selected node to the
named NodeGroup, given the filters applied

GetChildren
 GetChildren "Node ItemID" "Type" "NodeGroup";
 Sets the named NodeGroup to be the matching child
nodes
 GetChildren "Node ItemID" "Type" "NodeGroup" Append;
 Adds the children if any of the selected node to the
named NodeGroup
 GetChildren "Node ItemID" "Type" "NodeGroup" (field
operator value [logic field operator value]);
 Sets the named NodeGroup to be the matching child
nodes, given the filters applied
 GetChildren "Node ItemID" "Type" "NodeGroup" Append
(field operator value [logic field operator value]);
 Adds the children if any of the selected node to the
named NodeGroup, given the filters applied

GetChildrenTwoParents
 GetChildren "Node Parent 1 ID" "Node Parent 2 ID"
"Type" "NodeGroup";
 Sets the named NodeGroup to be the matching child
nodes
 GetChildren "Node Parent 1 ID" "Node Parent 2 ID"
"Type" "NodeGroup" Append;
 Adds the children if any of the selected node to the
named NodeGroup
 GetChildren "Node Parent 1 ID" "Node Parent 2 ID"
"Type" "NodeGroup" (field operator value [logic field operator
value]);
 Sets the named NodeGroup to be the matching child
nodes, given the filters applied
 GetChildren "Node Parent 1 ID" "Node Parent 2 ID"
"Type" "NodeGroup" Append (field operator value [logic field
operator value]);
 Adds the children if any of the selected node to the
named NodeGroup, given the filters applied

GetNow
 GetNow;

 Get the current date time
 GetNow "[Standard Date String Format]";
 Get the current date in the specified format (some
examples shown below)
 GetNow "dd-MMM-yyyy";
 Get the current date in the specified format eg 16-
Jul-2020
 GetNow "dd-MM-yyyy";
 Get the current date in the specified format eg
16-07-2020
 GetNow "dd-MM-yy";
 Get the current date in the specified format eg
16-07-20
 GetNow "dd-MMM-yyyy hh:mm:ss";
 Get the current date and time in the specified 12-hour
format eg 16-Jul-2020 03:18:46
 GetNow "dd-MM-yyyy HH:mm:ss";
 Get the current date and time in the specified 24-hour
format eg 16-Jul-2020 15:18:46
 GetNow "hh:mm:ss";
 Get the current time in the specified 12-hour format
eg 03:18:46
 GetNow "HH:mm:ss";
 Get the current time in the specified 24-hour format
eg 15:18:46

GetParents
 GetParents "Node ItemID" "Type" "NodeGroup";
 Sets the named NodeGroup to be the matching
parent nodes
 GetParents "Node ItemID" "Type" "NodeGroup" Append;
 Adds the parents if any of the selected node to the
named NodeGroup
 GetParents "Node ItemID" "Type" "NodeGroup" (field
operator value [logic field operator value]);
 Sets the named NodeGroup to be the matching
parent nodes, given the filters applied

 GetParents "Node ItemID" "Type" "NodeGroup" Append
(field operator value [logic field operator value]);
 Adds the parents if any of the selected node to the
named NodeGroup, given the filters applied

GetParentsTwoChildren
 GetParentsTwoChildren "Node Child 1 ID" "Node Child
2 ID" "Type" "NodeGroup";
 Sets the named NodeGroup to be the matching child
nodes
 GetParentsTwoChildren "Node Child 1 ID" "Node Child
2 ID" "Type" "NodeGroup" Append;
 Adds the children if any of the selected node to the
named NodeGroup
 GetParentsTwoChildren "Node Child 1 ID" "Node Child
2 ID" "Type" "NodeGroup" (field operator value [logic field
operator value]);
 Sets the named NodeGroup to be the matching child
nodes, given the filters applied
 GetParentsTwoChildren "Node Child 1 ID" "Node Child
2 ID" "Type" "NodeGroup" Append (field operator value [logic
field operator value]);
 Adds the children if any of the selected node to the
named NodeGroup, given the filters applied

Graphic.DateTaken
 Graphic.DateTaken "GraphicName";
 Returns the date the image was taken

Graphic.Exists
 Graphic.Exists "name";
 See if it exists in memory

Graphic.GetAverageColour
 Graphic.GetAverageColour "image";
 adds the html value into the output

Graphic.GetHeight

 Graphic.GetHeight "GraphicName";
 Returns the height in pixels of the object
 Graphic.GetHeight "FileName";
 Returns the height in pixels of the Graphic from the
file

Graphic.GetWidth
 Graphic.GetWidth "GraphicName";
 Returns the width in pixels of the object
 Graphic.GetWidth "FileName";
 Returns the width in pixels of the Graphic from the file

Graphic.IsDark
 Graphic.IsDark "rgb(r,g,b)";
 Returns true or false

Graphic.LoadFile
 Graphic.LoadFile "Name" "Filename"; -Loads the
graphic file into the Graphic Object Variable name

Graphic.OutputJPG
 Graphic.OutputJPG "NetBitmap Name";
 Streams out the NetBitmap named as a JPG file

Graphic.OutputPNG
 Graphic.OutputPNG "NetBitmap Name";
 Streams out the NetBitmap named as a PNG file

Graphic.SaveJPG
 Graphic.SaveJPG"NetBitmap" "Filename";
 Saves out the NetBitmap into a file

Graphic.SavePNG
 Graphic.SavePNG "NetBitmap" "Filename";
 Saves out the NetBitmap into a file

Graphic.SetWidth
 Graphic.SetWidth "Name" Width in pixels;

 Sets the size for the width

HTML.Checkbox
 HTML.Checkbox Name Value Label;
 Creates a checkbox of the name, value and label
 HTML.Checkbox Name Value Label "True";
 Creates a checkbox of the name, value and label and
sets it checked status to true
 HTML.Checkbox Name Value Label "False";
 Creates a checkbox of the name, value and label and
sets it checked status to false
 HTML.Checkbox Name Value Label { "style" "items for
style"; "class" "items for class"; };
 Creates a checkbox of the name, value and label, and
includes html tags to format elements of it
 HTML.Checkbox Name Value Label "True/
False" { "style" "items for style"; "class" "items for class"; };
 Creates a checkbox of the name, value and label and
sets it checked status to true. Includes html tags to format
elements of it

HTML.CreateForm
 HTML.CreateForm "ID" "Standard" PostbackURL
SubmitLabel {Script to run within form tags};
 Creates a standard form and submit button
automatically
 HTML.CreateForm "ID" "Multipart" PostbackURL
SubmitLabel {Script to run within form tags};
 Creates a multipart form and submit button
automatically
 HTML.CreateForm "ID" "Standard" PostbackURL {Script
to run within form tags};
 Creates a standard form
 HTML.CreateForm "ID" "Multipart" PostbackURL {Script
to run within form tags};
 Creates a multipart form

HTML.Dropdown

 HTML.Dropdown ID NodeGroup TextField ValueField;
 Sets up the drop down with the selected text and
value field
 HTML.Dropdown ID NodeGroup TextField ValueField
JavaScriptOnChange;
 Sets up the drop down with the selected text and
value field and an "onchange" event
 HTML.Dropdown ID Array;
 Sets up the drop down with the Array
 HTML.Dropdown ID Array JavaScriptOnChange;
 Sets up the drop down with the Array and an
"onchange" event
 HTML.Dropdown ID ArrayText ArrayValue;
 Sets up the drop down with the Array for Text and an
Array for Values
 HTML.Dropdown ID ArrayText ArrayValue
JavaScriptOnChange;
 Sets up the drop down with the Array for Text and an
Array for Values and an "onchange" event
 HTML.Dropdown ID NodeGroup TextField ValueField
{ "style" "items for style"; "class" "items for class"; };
 Sets up the drop down with the selected text and
value field
 HTML.Dropdown ID NodeGroup TextField ValueField
JavaScriptOnChange { "style" "items for style"; "class" "items
for class"; };
 Sets up the drop down with the selected text and
value field and an "onchange" event
 HTML.Dropdown ID Array { "style" "items for style";
"class" "items for class"; };
 Sets up the drop down with the Array
 HTML.Dropdown ID Array JavaScriptOnChange { "style"
"items for style"; "class" "items for class"; };
 Sets up the drop down with the Array and an
"onchange" event
 HTML.Dropdown ID ArrayText ArrayValue { "style" "items
for style"; "class" "items for class"; };

 Sets up the drop down with the Array for Text and an
Array for Values
 HTML.Dropdown ID ArrayText ArrayValue
JavaScriptOnChange { "style" "items for style"; "class" "items
for class"; };
 Sets up the drop down with the Array for Text and an
Array for Values and an "onchange" event

HTML.Hidden
 HTML.Hidden Name Value;
 Creates a hidden item on the form with the set name
and value

HTML.Number
 HTML.Number Name Value Min Max;
 Creates a number selector button of the name, value
and maximum and minimum values
 HTML.Number Name Value Min Max { "style" "items for
style"; "class" "items for class"; };
 Creates a number selector button of the name, value
and maximum and minimum values

HTML.Radio
 HTML.Radio Name Value Label;
 Creates a radio button of the name, value and label
 HTML.Radio Name Value Label "True";
 Creates a radio button of the name, value and label
and sets it checked status to true
 HTML.Radio Name Value Label "False";
 Creates a radio button of the name, value and label
and sets it checked status to false
 HTML.Radio Name Value Label { "style" "items for style";
"class" "items for class"; };
 Creates a radio button of the name, value and label
 HTML.Radio Name Value Label "True" { "style" "items for
style"; "class" "items for class"; };
 Creates a radio button of the name, value and label
and sets it checked status to true

 HTML.Radio Name Value Label "False" { "style" "items
for style"; "class" "items for class"; };
 Creates a radio button of the name, value and label
and sets it checked status to false

HTML.Range
 HTML.Range Name Value Min Max;
 Creates a range slider with the name, value, and min
and max values set
 HTML.Range Name Value Min Max { "style" "items for
style"; "class" "items for class"; };
 Creates a range slider with the name, value, and min
and max values set

HTML.Submit
 HTML.Submit Label;
 Creates the submit button with the specified label on
the form
 HTML.Submit Label { "style" "items for style"; "class"
"items for class"; };
 Creates the submit button with the specified label on
the form

HTML.Text
 HTML.Text Name;
 Creates a form text box with the name set
 HTML.Text Name Value;
 Creates a form text box with the name and value set
 HTML.Text Name { "style" "items for style"; "class" "items
for class"; };
 Creates a form text box with the name set
 HTML.Text Name Value { "style" "items for style"; "class"
"items for class"; };
 Creates a form text box with the name and value set

HTML.TextArea
 HTML.TextArea Name;
 Creates a text area with the set name

 HTML.TextArea Name Rows Cols;
 Creates a text area with the set name and size
 HTML.TextArea Name Value;
 Creates a text area with the set name and value
 HTML.TextArea Name Rows Cols Value;
 Creates a text area with the set name, size and value
 HTML.TextArea Name { "style" "items for style"; "class"
"items for class"; };
 Creates a text area with the set name
 HTML.TextArea Name Rows Cols { "style" "items for
style"; "class" "items for class"; };
 Creates a text area with the set name and size
 HTML.TextArea Name Value { "style" "items for style";
"class" "items for class"; };
 Creates a text area with the set name and value
 HTML.TextArea Name Rows Cols Value { "style" "items
for style"; "class" "items for class"; };
 Creates a text area with the set name, size and value

HTMLToText
 HTMLToText "Filename";
 Converts the file

If
 If (test condition) {Script to run};
 Runs the script if the test condition is true.
 If (test condition) {Script to run} Else {Script to run};
 Runs the script if the test condition is true, if not it
runs the second script.
 If (test condition) {Script to run} (Second test condition)
{Script to run} ... can repeat test then scripts;
 Runs the script if the test condition is true, if not tries
the second condition, etc.
 If (test condition) {Script to run} (Second test condition)
{Script to run} Else {Script to run};
 Tries the different test conditions in order, if none of
them run it runs the "Else" code instead.

 If (test condition) (Second test condition) {Script to run}
{2nd Script to run} ... Else {Script to run};
 You can put all the tests at the start if you really want!

Array
 Array "Item1" "Item2" "Item3";
 Specifies the items are all part of a collection, and will
process any commands used in place of an item

InArray
 InArray [Array "Item1" "Item2"] { [Code to perform]};
 Runs the code over the Array (Not a loop, but applies
the code to the elements in the array).

ItemData
 ItemData index;
 When there is an array in memory, Replaces the
phrase from the array at that index value.
 ItemData;
 Replaces the phrase with the current value in
memory.

ItemIndex
 ItemIndex;
 Replaces the phrase with the current value in
memory.

ListCommands
 ListCommands (SearchTerm);
 Lists all the commands available that match the
search term
 ListCommands;
 Lists all the commands currently available

LoginUser
 LoginUser "Username" "Password";
 Logs the user in with the specified username and
password.

Logout
 Logout;
 Logs the current user out.
 Logout UserID SessionID;
 Logs the current user out, supplying the data yourself.

Lower
 Lower; -What it does

Mail.AddBCC
 Mail.AddBCC; -What it does

Mail.AddCC
 Mail.AddCC; -What it does

Mail.AddTo
 Mail.AddTo; -What it does

Clear
 Clear;
 Clears the output from memory
 Clear All;
 Clears everything from memory - Variables,
Nodegroups, etc
 Clear "VarArray";
 Clears the Array from memory
 Clear "Variable";
 Clears the variable from memory
 Clear "NodeGroup";
 Clears the NodeGroup from memory
 Clear "Graphic";
 Clears the Graphic from memory
 Clear "Scope";
 Clears all the items in the named Scope from
memory
 Clear "Function";
 Clears the function from memory

 Clear "Item1" "Item2" "Item3"...;
 Clears the items from memory, can have as many
listed as required

Mail.Clear
 Mail.Clear; -What it does

Mail.Message
 Mail.Message "Text" True;
 Sets the Email message to the text in HTML format
 Mail.Message "Text" False;
 Sets the Email to the text in Plain text format

Mail.Priority
 Mail.Priority High;
 Sets the email priority to High
 Mail.Priority Normal;
 Sets the email priority to Normal
 Mail.Priority Low;
 Sets the email priority to Low

Mail.Send
 Mail.Send; -What it does

Mail.SetBCC
 Mail.SetBCC; -What it does

Mail.SetCC
 Mail.SetCC "Email Address" "Name";
 Sets the CC field for the email

Mail.SetFrom
 Mail.SetFrom "Email Address" "Their Name";
 Set the From address for email to the specific email
address and their displayed name

Mail.SetReply
 Mail.SetReply "Email Address" "Their Name";

 Set the From address for email to the specific email
address and their displayed name

Mail.SetTo
 Mail.SetTo "Email Address" "Their Name";
 Set the To address for email to the specific email
address and their displayed name

Mail.Subject
 Mail.Subject "Subject";
 Sets the Subject of the Email

NewGuid
 NewGuid;
 Add a new GUID into the code

Node
 Node "itemID" "field";
 Enters the data from the field of a specific Node via
ItemID into the script, if the application and/or the user has
permission to view that node.
 Node "groupname" "number" "field";
 Finds the node in the specified group at the specified
index and enters the data from the field into the script.
 Node "groupname" (Field Operator Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.
 Node "groupname" (Field == Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.
 Node "groupname" (Field != Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.

Node.Create

 Node.Create "Name" "TypeName" { "Field" "Value"; ... };
 Creates the node of the given type and stores the
itemID for that Node in a variable of the name specified,
setting the fields of the node as required.
 Node.Create "Name" "TypeName";
 Creates the node of the given type and stores the
itemID for that Node in a variable of the name specified

Node.Delete
 Node.Delete NodeID;
 Deletes the Node

Node.DeleteLink
 Node.DeleteLink "Parent ID" "Child ID";
 Deletes the link between the parent and child.

Node.FieldList
 Node.FieldList;
 The node fields as an array

Node.GetChildTypes
 Node.GetChildTypes "Node ID";

Node.GetParentTypes
 Node.GetParentTypes "Node ID";

Node.GetTypeNode
 Node.GetTypeNode "Type" "VariableName" - Create a
variable storing the ItemID of the Node of the named Type

Node
 Node "itemID" "field";
 Enters the data from the field of a specific Node via
ItemID into the script, if the application and/or the user has
permission to view that node.
 Node "groupname" "number" "field";

 Finds the node in the specified group at the specified
index and enters the data from the field into the script.
 Node "groupname" (Field Operator Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.
 Node "groupname" (Field == Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.
 Node "groupname" (Field != Value) "field";
 Finds the node in the specified group that matches
the test criteria and enters the data from the field into the
script. If not found, replaced with a blank string.

Node.Link
 Node.Link "ParentNodeID" "ChildNodeID";
 Creates a standard link between the two nodes
 Node.Link "ParentNodeID" "ChildNodeID" "LinkType";
 Creates a link of a specific type between two nodes
 Node.Link "ParentNodeID" "ChildNodeID"
"LinkType" { Field: Value; ... };
 Create a link and set the link fields as required

Node.TypeList
 Node.TypeList;
 The node types as an array

Node.Update
 Node.Update NodeID { "Field" "Value"; ... };
 Updates the selected fields with the new values (if
that type supports that field)

NodeGroup.Add
 NodeGroup.Add "NodeGroup" "NodeID";
 Adds the node to the nodegroup

NodeGroup.Count

 NodeGroup.Count "Name";
 Gives the number of items in the Node group.

NodeGroup.Create
 NodeGroup.Create "Name";
 Creates the Node group.
 NodeGroup.Create "Name1" "Name2" "Name3";
 Creates the Node groups.

NodeGroup.Difference
 NodeGroup.Difference; -What it does

NodeGroup.Filter
 NodeGroup.Filter (NodeGroup) (field [test condition]
value);
 Removes any items from the group where the test is
false

NodeGroup.GetByType
 NodeGroup.GetByType "Type" "NodeGroup";
 Sets the named NodeGroup to be the matching child
nodes
 NodeGroup.GetByType "Type" "NodeGroup" Append;
 Adds the children if any of the selected node to the
named NodeGroup
 NodeGroup.GetByType "Type" "NodeGroup" (field
operator value [logic field operator value]);
 Sets the named NodeGroup to be the matching child
nodes, given the filters applied
 NodeGroup.GetByType "Type" "NodeGroup" Append
(field operator value [logic field operator value]);
 Adds the children if any of the selected node to the
named NodeGroup, given the filters applied

NodeGroup.Intersection
 NodeGroup.Intersection; -What it does

NodeGroup.Refresh

 NodeGroup.Refresh; -What it does

NodeGroup.SetScope
 NodeGroup.SetScope "NodeGroup" "Scope";
 Adds the named NodeGroup into the Scope specified

NodeGroup.Sort
 NodeGroup.Sort (groupname) (field);
 Sorts the Node group by the field specified
 NodeGroup.Sort (groupname) (field) Desc;
 Sorts the Node group by the field specified,
descending order

NodeGroup.SymmetricDifference
 NodeGroup.SymmetricDifference "Group1" "Group2"
"Group3";
 Adds the Nodes in Groups 1 or 2 but not in both into a
new group 3

NodeGroup.Union
 NodeGroup.Union "Group1" "Group2" "Group3";
 Adds all the Nodes in Groups 1 and 2 into a new
group 3

NodeGroup.Unique
 NodeGroup.Unique "NodeGroup";
 Removes any duplicate nodes

NodeLink
 NodeLink (item1ID) (item2ID) (field);
 Enters the data from the field of a specific NodeLink
via ItemID's into the script

NodeList
 NodeList;
 What it does

Output.Compact

 Output.Compact;
 Compresses the white space out of the output
document

QR.Generate
 QR.Generate "GraphicID" "Text to convert"

QR.GenerateBitcoinAddress
 QR.GenerateBitcoinAddress "GraphicID" "Bitcoin
address" "amount"
 QR.GenerateBitcoinAddress "GraphicID" "Bitcoin
address" "amount" "label" "message"

QR.GenerateBookmark
 QR.GenerateBookmark "GraphicID" "URL" "Name"

QR.GenerateCalendar
 QR.GenerateCalendar "GraphicID" "Text to convert"

QR.GenerateContact
 QR.GenerateContact "GraphicID" "Forename"
"Surname"

QR.GenerateGeolocation
 QR.GenerateGeolocation "GraphicID" "Text to convert"

QR.GenerateMail
 QR.GenerateMail "GraphicID" "Email Address"
 QR.GenerateMail "GraphicID" "Email Address" "Subject"
"Message"

QR.GenerateMMS
 QR.GenerateMMS "GraphicID" "Text to convert"

QR.GeneratePhone
 QR.GeneratePhone "GraphicID" "Text to convert"

QR.GenerateSkype

 QR.GenerateSkype "GraphicID" "Text to convert"

QR.GenerateSMS
 QR.GenerateSMS "GraphicID" "Number"
 QR.GenerateSMS "GraphicID" "Number" "Subject"

QR.GenerateURL
 QR.GenerateURL "GraphicID" "URL"

QR.GenerateWhatsApp
 QR.GenerateWhatsApp "GraphicID" "Text to convert"

QR.GenerateWiFi
 QR.GenerateWiFi "GraphicID" "Text to convert"

Random.Next
 Random.Next;
 Generates a random number
 Random.Next Minimum Maximum;
 Generates a random number between two integer
values including Minimum but up to Maximum

Random.Seed
 Random.Seed Value;
 Sets the random number generator to a seed value

RegisterApp
 RegisterApp NAME;
 Creates an empty application on the system with the
name

RenameDirectory
 RenameDirectory "Directory Name" "New Name";
 Renames the directory

RenameFile
 RenameFile "File Name" "New Name";
 Renames the file

Render
 Render; -What it does

ReplaceInFile
 ReplaceInFile "Filename" "What To Replace" "Replace
with This";
 Replaces every instance of the first with the second in
the file

RequestLinkLogin
 RequestLinkLogin "Username" "URL" "Application ID"
"Application Name" "From Name" "From Email";
 If the user is registered for this application, their email
address will be sent a link to the URL/?u=Username given to
allow them to log in to the system without a password. The
link is only live for 5 minutes.

RunScript
 RunScript "Script Data" "String 1" "String 2" "String 3";
 Run the script data, replacing {0} etc with the string
items
 RunScript "Script Data" [Array items];
 Run the script data, replacing {0} etc with the Array
items
 RunScript "Script Data";
 Run the script data

RunScriptFile
 RunScriptFile "Filename" ("Password") [Array Items];
 Run an Encrypted script data file, replacing {0} etc
with the items in the array
 RunScriptFile "Filename" ("Password") "Item 1" "Item 2";
 Run an Encrypted script data file, replacing {0} etc
with the items in the list
 RunScriptFile "Filename" ("Password");
 Run an Encrypted script data file after decrypting with
the password

 RunScriptFile "Filename" [Array Items];
 Run the script data held in that file, replacing {0} etc
with the items in the array
 RunScriptFile "Filename" "Item 1" "Item 2";
 Run the script data file, replacing {0} etc with the
items in the list
 RunScriptFile "Filename";
 Run the script data held in that file

RunScriptIntoVar
 RunScriptIntoVar "VariableName"
"Filename" ("Password") [Array Items];
 Run an Encrypted script data file into a variable,
replacing {0} etc with the items in the array
 RunScriptIntoVar "VariableName"
"Filename" ("Password") "Item1" ... "ItemX";
 Run an Encrypted script data file into a variable,
replacing {0} etc with the items in the list
 RunScriptIntoVar "VariableName"
"Filename" ("Password");
 Run an Encrypted script data file into a variable after
decrypting with the password
 RunScriptIntoVar "VariableName" "Filename" [Array
Items];
 Run the script data held in that file into a variable,
replacing {0} etc with the items in the array
 RunScriptIntoVar "VariableName" "Filename" "Item1" ...
"ItemX";
 Run the script data file into a variable, replacing {0}
etc with the items in the list
 RunScriptIntoVar "VariableName" "Filename";
 Run the script data held in that file into a variable

Var
 Var "NAME" VALUE ("Scope");
 Set the variable and set it's Scope grouping
 Var "NAME" VALUE;
 Set the variable

 Var "NAME" VALUE + VALUE;
 Set the variable to the items added together. Can use
+, -, / or * and as many values as you wish together!

SaveOutput
 SaveOutput "Filename";
 Saves the output into the file

SaveOutputText
 SaveOutputText "Filename";
 Saves the output into the file stripped of it's HTML
tags

Script.Clean
 Script.Clean "Filename";
 Reformats the script to make it easier to read, then
saves it!

Script.Create
 Script.Create "Filename";
 Creates a blank template
 Script.Create "Filename" { Property=Value; };
 Creates a template with the Meta Data requested at
the top
 Script.Create "Filename" Expected FormPostBack
{ Property=Value; };
 Creates a template with the Meta Data requested at
the top, and you can select to include templates for an
Expected section and a FormPostBack section

Script.Using
 Script.Using "Filename" { < Code > };
 Applies the code to the website data at the specified
URL. Everything here can be done in one go.
 Script.Using "Filename" { MetaTag Property
VariableName; };
 Puts the content of the MetaTag property into the
variable name listed

ScriptAppend
 ScriptAppend "Script";

SessionID
 SessionID; -What it does

Setting.ApplicationID
 Setting.ApplicationID;
 Gets from settings

StopScript
 StopScript;
 Halts the script application and just returns any output
created so far.

Substring
 Substring "Text" StartIndex;
 Whatever is listed in the text is reduced to the
substring
 Substring "Text" StartIndex NumberOfCharacters;
 Whatever is listed in the text is reduced to the
substring

Switch
 Switch VariableToTest Condition {Script to run}
Condition2 {Script to run} ... ConditionX {Script to run};
 Runs the correct script if the variable matches the
condition.
 Switch VariableToTest Condition {Script to run}
"DefaultSwitch" {Script to run};
 Runs the DefaultSwitch script if the variable matches
no other condition.

TextToHTML
 TextToHTML "Filename";
 Converts the file

Trim
 Trim X;
 Removes the white space from the front and back of
the variable
 Trim X (number);
 Removes the number of characters from the end of
the variable
 Trim X (number) (number2);
 Removes the number2 of characters from the start of
the variable and number characters from the end of the
variable

Upper
 Upper; -What it does

User.ConfirmRegister
 User.ConfirmRegister "Username" "Password" "LinkID";
 Confirms the username and password of the person
clicking on the link. Returns "User Confirmed" or "User Not
Confirmed"

User.Register
 User.Register "Username" "Password" "Email" "Link";
 If the Username doesn't exist, send the email to this
person to say it is registered and you need to click a link.
Added to the link will be the Variable LinkID = and the User
account Identifier when sent in the email, so should be the
entire domain link. Returns "User Registered" or "Username
Taken"

Var
 Var "NAME" VALUE ("Scope");
 Set the variable and set it's Scope grouping
 Var "NAME" VALUE;
 Set the variable
 Var "NAME" VALUE + VALUE;
 Set the variable to the items added together. Can use
+, -, / or * and as many values as you wish together!

Var.Append
 Var.Append "Variable" "What to append"; -Adds to the
end of the variable

Var.Dec
 Var.Dec "NAME" VALUE;
 Decrement the variable by the value
 Var.Dec "NAME";
 Decrement the variable by 1

Var.Exists
 Var.Exists "Name";
 Returns True if it exists or False if it doesn't.

Var.Inc
 Var.Inc "NAME" VALUE;
 Increment the variable by the value
 Var.Inc "NAME";
 Increment the variable by 1

Var.IndexOf
 Var.IndexOf "Name" "Substring";
 Returns a value of the index the substring is found at,
or -1 if it is not found

Var.Lock
 Var.Lock "Variable" "Password";
 Sets a password on a variable so that it cannot be
changed until it is unlocked. The Var cannot be cleared until
unlocked too.

Var.Replace
 Var.Replace "Variable" "String to replace" "What to
replace with";
 Replace what is listed with what is set
 Var.Replace "Variable" "String to replace" "{empty}";
 Deletes the string to replace from the variable

Var.Split
 Var.Split "VariableName" "Character";
 Splits the variable into an array

Var.Unlock
 Var.Unlock "Variable" "Password";
 Clears a password on a variable so that it can be
changed again.

Var.Value
 Var.Value "Name";
 Gets the value from the Variable with that name!

Var.ValueInList
 Var.ValueInList "Name" "VarArray Name";
 Returns true if the variable matches one of the items
in the Variable Array
 Var.ValueInList "Name" "Value1" "Value2";
 Returns true if the variable matches one of the items
in the list

VarArray
 VarArray "Name" "Item1" "Item2" ... "ItemX" ("Scope");
 Create an array of a given name and add the items
into it and sets the Scope grouping
 VarArray "Name" "Item1" "Item2" ... "ItemX";
 Create an array of a given name and add the items
into it

Array
 Array "Item1" "Item2" "Item3";
 Specifies the items are all part of a collection, and will
process any commands used in place of an item

VarFile
 VarFile "Variable Name" "FileName" "Replacement for
{0}" "Replacement for {1}"... "Replacement for {n}";

 Set the variable to the contents of the file, but replace
items like a template
 VarFile "Variable Name" "FileName";
 Set the variable to the contents of the file

VarFileText
 VarFileText NAME "FileName" Mark;
 Set the variable to the contents of the file, and treat
as Markdown text.
 VarFileText NAME "FileName";
 Set the variable to the contents of the file

Web.Using
 Web.Using "URL" { < Code > };
 Applies the code to the website data at the specified
URL. Everything here can be done in one go.
 Web.Using "URL" { MetaTag Property VariableName; };
 Puts the content of the MetaTag property into the
variable name listed

While
 While (Test == true) { Code To Run };
 Runs the code in the loop until the test is false

WhoAmI
 WhoAmI;
 Returns your current Username.
 WhoAmI ;
 Returns the selected field from the User Record.

Write
 Write "What you want to put in";
 Simply adds the text to the output
 Write "Line 1" "Line 2" "Line 3";
 Adds each comment one after the other to the output

WriteLn
 WriteLn;

 Simply adds a blank line break to the output
 WriteLn "What you want to put in";
 Simply adds a line to the output
 WriteLn "Line 1" "Line 2" "Line 3";
 Adds each line separately to the output

WriteToFile
 WriteToFile "Filename" "Data";
 Writes the data to the file, overwriting if necessary

About the Author

Chris Lewis is a software developer, IT Lecturer, and a
dreamer. He shouldn't be allowed to write about himself as
he has a penchant for talking about himself in the third
person anyway.

	Prologue
	Why Another Language?
	Ten Simple Rules
	Conventions
	Why Vortex?
	HTML and the Document
	Cascading Style Sheets
	HTML Tags
	Cascading Style Sheet Tags
	Colours in a Computer
	JavaScript
	Setting up your own system
	TornadoScript
	Vortex for Beginners
	The Algorithm is never finished!
	Making our cup of tea pretty
	Scripts & Functions
	Components
	Calling Functions from Variables
	The Vortex Adventure Game
	Post-backs and AJAX and Files, Oh My!
	Making Websites Cleaner
	Designing a Program
	The Data
	Using Node Types
	The Node Renderer
	Parents and Children
	Creating and Linking Nodes
	Updating Nodes
	The Netelligence Program Pattern
	The Graphic generate Pattern
	The Ajax Form Post-back Pattern
	The Ajax Form Dialog Pattern
	Standalone Vortex Code (Single script)
	Graphic Manipulation
	Simple 3D
	Building a Unit Test Rig
	Complex Components
	The User Interface
	Making your own Commands
	Where is Vortex headed?
	Special Thanks
	Command List - Up to Date?
	About the Author

